Skip to content

i2mint/ju

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

100 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ju

JSON schema Utils

To install: pip install ju

Documentation

Examples

JSON Schema

You have tools to extract JSON schema information from python objects, as well as to create python objects from them.

>>> from ju import signature_to_json_schema, json_schema_to_signature
>>>
>>>
>>> def earth(north: str, south: bool, east: int = 1, west: float = 2.0):
...     """Earth docs"""
...     return f'{north=}, {south=}, {east=}, {west=}'
...
>>> schema = signature_to_json_schema(earth)
>>> assert schema == {
...     'description': 'Earth docs',
...     'title': 'earth',
...     'type': 'object',
...     'properties': {
...         'north': {'type': 'string'},
...         'south': {'type': 'boolean'},
...         'east': {'type': 'integer', 'default': 1},
...         'west': {'type': 'number', 'default': 2.0},
...     },
...     'required': ['north', 'south'],
... }
>>>
>>> sig = json_schema_to_signature(schema)
>>> sig
<Sig (north: str, south: bool, east: int = 1, west: float = 2.0)>
>>> sig.name
'earth'
>>> sig.docs
'Earth docs'

React JSON Schema Form (rjsf)

You can get a react-jsonschema-form (rjsf) specification (see the rjsf playground) from a python function.

>>> def foo(
    ...     a_bool: bool,
    ...     a_float=3.14,
    ...     an_int=2,
    ...     a_str: str = 'hello',
    ...     something_else=None
    ... ):
    ...     '''A Foo function'''
    >>>
    >>> form_spec = func_to_form_spec(foo)
    >>> assert form_spec == {
    ...     'rjsf': {
    ...         'schema': {
    ...             'title': 'foo',
    ...             'type': 'object',
    ...             'properties': {
    ...                 'a_bool': {'type': 'boolean'},
    ...                 'a_float': {'type': 'number', 'default': 3.14},
    ...                 'an_int': {'type': 'integer', 'default': 2},
    ...                 'a_str': {'type': 'string', 'default': 'hello'},
    ...                 'something_else': {'type': 'string', 'default': None}
    ...             },
    ...             'required': ['a_bool'],
    ...             'description': 'A Foo function'
    ...         },
    ...         'uiSchema': {
    ...             'ui:submitButtonOptions': {
    ...                 'submitText': 'Run'
    ...             },
    ...             'a_bool': {'ui:autofocus': True}
    ...         },
    ...         'liveValidate': False,
    ...         'disabled': False,
    ...         'readonly': False,
    ...         'omitExtraData': False,
    ...         'liveOmit': False,
    ...         'noValidate': False,
    ...         'noHtml5Validate': False,
    ...         'focusOnFirstError': False,
    ...         'showErrorList': 'top'
    ...     }
    ... }

OpenAPI Routes

Represents a collection of routes in an OpenAPI specification.

Each instance of this class contains a list of Route objects, which can be accessed and manipulated as needed.

>>> from yaml import safe_load
>>> spec_yaml = '''
... openapi: 3.0.3
... paths:
...   /items:
...     get:
...       summary: List items
...       responses:
...         '200':
...           description: An array of items
...     post:
...       summary: Create item
...       responses:
...         '201':
...           description: Item created
... '''
>>> spec = safe_load(spec_yaml)
>>> routes = Routes(spec)
>>> len(routes)
2
>>> list(routes)
[('get', '/items'), ('post', '/items')]
>>> r = routes['get', '/items']
>>> r
Route(method='get', endpoint='/items')
>>> r.method_data
{'summary': 'List items', 'responses': {'200': {'description': 'An array of items'}}}

pydantic utils

The ju.pydantic_util module provides comprehensive tools for working with Pydantic models and JSON schemas.

Creating Models from Data and Schemas

Generate Pydantic models dynamically from data or JSON schemas:

from ju.pydantic_util import data_to_pydantic_model, schema_to_pydantic_model

# Create model from data dictionary
data = {"name": "Alice", "age": 30, "address": {"city": "NYC", "zip": "10001"}}
UserModel = data_to_pydantic_model(data, "User")

# Create model from JSON schema
schema = {
    "type": "object",
    "properties": {
        "title": {"type": "string"},
        "price": {"type": "number"}
    }
}
ProductModel = schema_to_pydantic_model(schema)

Model Validation and Selection

Check data validity and find matching models:

from ju.pydantic_util import is_valid_wrt_model, valid_models

# Check if data is valid for a specific model
is_valid = is_valid_wrt_model({"name": "Bob", "age": 25}, UserModel)

# Find all models that validate given data
models = [UserModel, ProductModel, AdminModel]
matching = list(valid_models(data, models))

Code Generation with Transformations

Convert models and schemas to Python code with optional transformations:

from ju.pydantic_util import pydantic_model_to_code

# Generate code from model
code = pydantic_model_to_code(UserModel)

# Apply transformations during generation
def fix_field_names(schema):
    # Transform problematic field names
    if 'properties' in schema:
        for old_name, new_name in [('class_', 'class_name'), ('type_', 'type_name')]:
            if old_name in schema['properties']:
                schema['properties'][new_name] = schema['properties'].pop(old_name)
    return schema

code = pydantic_model_to_code(
    source_schema, 
    ingress_transform=fix_field_names,
    egress_transform=lambda code: f"# Auto-generated\n{code}"
)

Model Introspection and Data Extraction

Extract structured information about models and use them as data extraction templates:

from ju.pydantic_util import (
    field_paths_and_annotations, 
    model_field_descriptions,
    ModelExtractor
)

# Get flattened field paths and types
paths = field_paths_and_annotations(UserModel)
# {'name': str, 'age': int, 'address.city': str, 'address.zip': str}

# Extract field descriptions
descriptions = model_field_descriptions(UserModel)

# Use models as data extraction templates
extractor = ModelExtractor([UserModel, AdminModel])
data_reader = extractor(json_data)  # Returns mapping with model-based paths
values = data_reader['address.city']  # Extract nested values easily

The module handles complex scenarios like nested models, generic types, collections, and provides flexible validation and transformation capabilities.

About

JSON schema Utils

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages