Skip to content

initiumlab/data-urchin

Repository files navigation

The boilerplate and utilities for Data Science in Python3.

Features

  • Python3
  • Hand-picked, de facto standard Python libraries
  • Use IPython Notebook
  • Time-proven practices in Initium Lab
  • Boilerplates, sample codes, cheat sheets, quick hacks, ...
  • [TODO] Integration with production-ready Javascript libraries
  • [TODO] Workflow for Continuous Deployment of mining results

Usage -- Docker Compose

  • docker-compose up.
  • Visit port 8888 on docker-machine ip XXXX to operate the notebook.
  • Be default, this current dir is mapped into the container as working folder. You can pass code/data in directly.

Usage -- Docker

Get the docker image

Choose either way:

  • docker pull initiumlab/urchin
  • docker build -t initiumlab/urchin .

Run The Notebook

docker run -v urchin:/app -p 8888:8888 -it initiumlab/urchin sh -c 'ipython notebook --ip 0.0.0.0'

You can find the volumen on your docker-machine in following folder: /var/lib/docker/volumes/urchin/_data

Usage -- Plain Format

Initial setup:

  • Fork and Clone this repository
  • Instal Python3
  • virtualenv -p python3 venv or pyvenv venv
  • source venv/bin/activate
  • pip install -r requirements.txt

Following usage:

  • source venv/bin/activate (save time if you use virtualenvwrapper. .venv is configured)
  • Use ipython notebook to launch the environment
  • Copy any interesting stuff from boilerplates to the root and hack away

Sample pages

  • team.initiumlab.com/data-urchin/

About

The boilerplate and utilities for Data Science in Python3

Resources

Stars

Watchers

Forks

Packages

No packages published