The boilerplate and utilities for Data Science in Python3.
- Python3
- Hand-picked, de facto standard Python libraries
- Use IPython Notebook
- Time-proven practices in Initium Lab
- Boilerplates, sample codes, cheat sheets, quick hacks, ...
- [TODO] Integration with production-ready Javascript libraries
- [TODO] Workflow for Continuous Deployment of mining results
docker-compose up.- Visit port 8888 on
docker-machine ip XXXXto operate the notebook. - Be default, this current dir is mapped into the container as working folder. You can pass code/data in directly.
Choose either way:
docker pull initiumlab/urchindocker build -t initiumlab/urchin .
docker run -v urchin:/app -p 8888:8888 -it initiumlab/urchin sh -c 'ipython notebook --ip 0.0.0.0'
You can find the volumen on your docker-machine in following folder:
/var/lib/docker/volumes/urchin/_data
Initial setup:
- Fork and Clone this repository
- Instal Python3
virtualenv -p python3 venvorpyvenv venvsource venv/bin/activatepip install -r requirements.txt
Following usage:
source venv/bin/activate(save time if you use virtualenvwrapper..venvis configured)- Use
ipython notebookto launch the environment - Copy any interesting stuff from
boilerplatesto the root and hack away
- team.initiumlab.com/data-urchin/