demo.mp4
Recognize over 100 dog breeds by drag and drop an image using Tensorflow.js and Teachable Machine.
Warning
This project is solely built around Machine Learning (no LLMs, no servers), I trained the model myself with a public dataset, so please don't expect 100% accuracy.
git clone git@github.com:jeferson-sb/dogAI.git && cd dogAI
npm installWikipedia integration
cp .env.example .env
VITE_WIKIPEDIA_ENDPOINT=https://en.wikipedia.org/w/api.php?origin=*&action=query&format=json&uselang=pt&prop=extracts&generator=prefixsearch&redirects=1&converttitles=1&formatversion=2&exintro=1&explaintext=1&gpssearch=
VITE_WIKIPEDIA_WIKI=https://en.wikipedia.org/wiki
npm run devnpm run testnpm run lint
npm run format- Gather a dataset with a bunch of images
- Resize and minify all the images
- Separate dogs image by breed and rename all the files
- Upload to Teachable Machine
- Train your model
- Export your trained model
Primary: Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao and Li Fei-Fei. Novel dataset for Fine-Grained Image Categorization. First Workshop on Fine-Grained Visual Categorization (FGVC), IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.
Secondary: J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR), 2009.
This project is licensed under the MIT License