Skip to content

A simple package for manipulating rna and dna sequences in pandas dataframes

License

Notifications You must be signed in to change notification settings

jyesselm/seq_tools

Repository files navigation

seq_tools

PyPI version Python 3.9+ Tests Coverage Code style: ruff Type checked: mypy License

A Python package for manipulating and analyzing nucleic acid sequences (DNA and RNA) in pandas DataFrames.

Features

  • Batch operations: Work with sequences in pandas DataFrames for efficient processing
  • Sequence manipulation: Convert between DNA/RNA, reverse complement, add sequences
  • Structure prediction: Fold RNA sequences using ViennaRNA
  • Analysis tools: Calculate molecular weights, extinction coefficients, edit distances
  • CLI interface: Command-line tools for quick sequence operations
  • Python API: Full programmatic access to all functionality

Installation

pip install rna_seq_tools

Quick Start

Command Line Interface

# Get help
seq-tools --help

# Convert RNA to DNA
seq-tools to-dna "AUCG"

# Fold RNA sequence
seq-tools fold "GGGGUUUUCCCC"

# Calculate molecular weight
seq-tools mw "ATCG"

Python API

import pandas as pd
from seq_tools import sequences_to_dataframe
from seq_tools.dataframe import to_rna, fold, get_molecular_weight

# Create a DataFrame from sequences
sequences = ["ATCG", "GCTA", "AAAA"]
df = sequences_to_dataframe(sequences)

# Convert to RNA
df = to_rna(df)

# Fold RNA sequences
df = fold(df)

# Calculate molecular weights
df = get_molecular_weight(df, "RNA", double_stranded=False)

print(df)

Single Sequence Functions

For single sequence operations, import directly from seq_tools:

from seq_tools import to_dna, to_rna, get_reverse_complement, get_molecular_weight

# Convert sequences
rna_seq = to_rna("ATCG")  # Returns "AUCG"
dna_seq = to_dna("AUCG")  # Returns "ATCG"

# Reverse complement
rc = get_reverse_complement("ATCG", "DNA")  # Returns "CGAT"

# Molecular weight
mw = get_molecular_weight("ATCG", "DNA")  # Returns 1307.80

CLI Commands

add

Add a sequence to the 5' and/or 3' end of sequences.

seq-tools add -p5 "AAAA" "GGGGUUUUCCCC"
seq-tools add -p5 "AAAA" -p3 "CCCC" input.csv

ec

Calculate the extinction coefficient for each sequence.

seq-tools ec "GGGGUUUUCCCC"
seq-tools ec input.csv -nt RNA -ds  # RNA, double-stranded

edit-distance

Calculate the average edit distance of a sequence library.

seq-tools edit-distance input.csv
seq-tools edit-distance input.csv --parallel --workers 4

fold

Fold RNA sequences using ViennaRNA.

seq-tools fold "GGGGUUUUCCCC"
seq-tools fold input.csv

mw

Calculate the molecular weight for each sequence.

seq-tools mw "ATCG"
seq-tools mw input.csv -nt DNA -ds  # DNA, double-stranded

rc

Calculate reverse complement for each sequence.

seq-tools rc "ATCG"
seq-tools rc input.csv -nt DNA

to-dna

Convert RNA sequences to DNA (replace U with T).

seq-tools to-dna "AUCG"
seq-tools to-dna input.csv -o output.csv

to-dna-template

Convert RNA sequences to DNA template with T7 promoter.

seq-tools to-dna-template "AUCG"
seq-tools to-dna-template input.csv

to-rna

Convert DNA sequences to RNA (replace T with U).

seq-tools to-rna "ATCG"
seq-tools to-rna input.csv

transcribe

Transcribe DNA template sequences to RNA (removes T7 promoter).

seq-tools transcribe input.csv

trim

Trim 5'/3' ends of sequences.

seq-tools trim input.csv --start 5 --end 3

to-fasta

Generate FASTA file from CSV.

seq-tools to-fasta input.csv output.fasta

to-opool

Generate oligo pool file (Excel) from CSV.

seq-tools to-opool input.csv "pool_name" output.xlsx

DataFrame Functions

The package provides comprehensive DataFrame operations via seq_tools.dataframe:

  • Conversion: to_dna(), to_rna(), to_dna_template()
  • Analysis: get_molecular_weight(), get_extinction_coeff(), get_length()
  • Structure: fold() - predict RNA secondary structures
  • Manipulation: add(), trim(), get_reverse_complement()
  • Generation: generate_random_sequences(), generate_mutated_sequences()
  • Validation: has_t7_promoter(), has_5p_sequence(), has_3p_sequence()
  • File I/O: to_fasta(), to_opool()
from seq_tools.dataframe import to_rna, fold, get_molecular_weight
# Use with DataFrames containing a 'sequence' column

Note: For backward compatibility, functions are also available with _df suffix from the main package (e.g., from seq_tools import to_rna_df), but the recommended approach is to import from seq_tools.dataframe.

See the notebooks directory for detailed examples.

Requirements

  • Python 3.9+
  • pandas
  • numpy
  • ViennaRNA (for structure prediction)
  • editdistance
  • click
  • tabulate

Tutorial Notebooks

Interactive Jupyter notebooks are available in the notebooks/ directory:

  • 01_introduction.ipynb: Package overview and quick start
  • 02_sequence_operations.ipynb: Working with individual sequences
  • 03_structure_analysis.ipynb: RNA folding and structure analysis
  • 04_dataframe_operations.ipynb: Batch processing with DataFrames
  • 05_advanced_features.ipynb: Advanced features and workflows

See the notebooks README for more details.

Development

Using Conda/Mamba (Recommended)

# Clone the repository
git clone https://github.com/jyesselm/seq_tools.git
cd seq_tools

# Create conda environment from environment.yml
conda env create -f environment.yml
# OR using mamba (faster)
mamba env create -f environment.yml

# Activate environment
conda activate seq_tools

# Install package in editable mode
pip install -e .

# Run tests
pytest test/ -v

Using pip/venv

# Clone the repository
git clone https://github.com/jyesselm/seq_tools.git
cd seq_tools

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies and package
pip install -e .

# Run tests
pytest test/ -v

Note: ViennaRNA is required for structure prediction. It's included in the conda environment, but for pip installations you may need to install it separately via conda or your system package manager.

License

This project is licensed under a Non-Commercial License. Commercial use is prohibited. See LICENSE file for details.

For commercial licensing inquiries, please contact jyesselm@unl.edu.

Author

Joe Yesselman - jyesselm@unl.edu

Contributing

Contributions are welcome! Please read CONTRIBUTING.md for detailed coding standards and guidelines.

Quick Start for Contributors

# Install with dev dependencies
make install

# Run all quality checks
make check

# Individual checks
make format      # Format code with ruff
make lint        # Lint with ruff
make type-check  # Type check with mypy
make coverage    # Run tests with coverage (90% minimum)

Code Standards

  • Maximum 3 levels of indentation
  • Functions ≤ 30 lines (with few exceptions)
  • One responsibility per function
  • All functions must have type hints and docstrings
  • Minimum 90% test coverage required
  • Use ruff and mypy for code quality

See CONTRIBUTING.md for complete details.

About

A simple package for manipulating rna and dna sequences in pandas dataframes

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published