Skip to content

lhaof/SparseDiffusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is the official repository of the paper "Sparse Diffusion Models for Multi-annotator Medical Image Segmentation".

Data preparations

data/ # the root of the data folders
    brain_growth/
    brain_tumor/
    kidney/
    prostate/

All datasets were taken from Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ) 2021. Download the datasets from the following link.

The datasets should have the following format

<dataset_name>/
    train/*
    val/*

Train and Evaluate

Environment: torch-1.12.1+cu113 torchvision-0.13.1+cu113

Install sp_avg:

cd improved_diffusion/sige_avg
pip install -e .

Training script example:

CUDA_VISIBLE_DEVICES=0 python image_train.py --dataname "brain_tumor" \
    --save_interval 5000 --batch_size 4 --lr 0.00002 --diffusion_steps 100 --consensus_training True \
    --n_gen 25 --log_interval 100 --predict_xstart True --learn_sigma False --use_fp16 False \
    --data_dir "./data/" --out_dir "./logs/"

Evaluation script example:

CUDA_VISIBLE_DEVICES=0 python image_sample.py --use_ddim False --dataname "brain_tumor" --model_path <path-for-model-weights> --data_dir "./data/" --use_sparse True --use_bg True --cal_bgnum True --overlap_w 0.1 --cut_padding 2 --n_gen 25

Pretrained model weights can be found here.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published