This application is intended to serve as an example of an implementation of a model trained with machine learning and deployed in a production environment.
📘 Review of the model, and the process
POST /toxic-comment/classify| Parameter | Type | Description |
|---|---|---|
comment |
String |
Required A comment (toxic comment) |
POST /eyes/classify| Parameter | Type | Description |
|---|---|---|
Image |
file |
Required Image of eye |
POST /fruit-or-vegetable/classify| Parameter | Type | Description |
|---|---|---|
Image |
file |
Required Image of fruit or vegetable |
Clone the project
git clone https://github.com/luismateoh/Antares.gitGo to the project directory
cd Antares/backendInstall dependencies
pip install -r requirements.txtStart the server
uvicorn app.main:app --reloadClone the project
git clone https://github.com/luismateoh/Antares.gitGo to the project directory
cd Antares/frontendInstall dependencies
npm installStart the dev server
npm run devGo to the project directory
cd AntaresRun the docker compose
docker-compose up -d --build

