Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 21 additions & 5 deletions numpy_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,10 +37,16 @@ def max_index(X):
If the input is not a numpy array or
if the shape is not 2D.
"""
i = 0
j = 0
if not isinstance(X, np.ndarray):
raise ValueError("Input must be a numpy array.")

# TODO
if X.ndim != 2:
raise ValueError("Input array's shape must be 2D.")

# find which row contains the maximum, then get its column
row = np.argmax(np.max(X, axis=1))
col = np.argmax(X[row])
i, j = row, col

return i, j

Expand All @@ -55,7 +61,7 @@ def wallis_product(n_terms):
----------
n_terms : int
Number of steps in the Wallis product. Note that `n_terms=0` will
consider the product to be `1`.
consider the procduct to be `1`.

Returns
-------
Expand All @@ -64,4 +70,14 @@ def wallis_product(n_terms):
"""
# XXX : The n_terms is an int that corresponds to the number of
# terms in the product. For example 10000.
return 0.
# n_terms cannot be negative (follows by definition)
if not isinstance(n_terms, int) or n_terms < 0:
raise ValueError("n_terms must be a non-negative integer.")
if n_terms == 0:
return 1.0
# k runs from 1 to n_terms
k = np.arange(1, n_terms + 1, dtype=float)
terms = (4 * k**2) / (4 * k**2 - 1)
product = np.prod(terms)

return 2 * product
88 changes: 72 additions & 16 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,46 +29,102 @@


class OneNearestNeighbor(BaseEstimator, ClassifierMixin):
"OneNearestNeighbor classifier."
"""One-nearest-neighbor classifier using Euclidean distance."""

def __init__(self): # noqa: D107
pass

def fit(self, X, y):
"""Write docstring.

And describe parameters
"""Fit the one-nearest-neighbor classifier.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training input.
y : ndarray of shape (n_samples,)
Target labels.

Returns
-------
self : OneNearestNeighbor
Fitted estimator.

Raises
------
ValueError
If X and y do not have compatible shapes or if y is not suitable
for classification.
"""
X, y = check_X_y(X, y)
check_classification_targets(y)
self.classes_ = np.unique(y)
self.n_features_in_ = X.shape[1]

# XXX fix
self.X_ = X
self.y_ = y
return self

def predict(self, X):
"""Write docstring.

And describe parameters
"""
Predict class labels for samples in X.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Input samples

Returns
-------
y_pred : ndarray of shape (n_samples,)
Predicted labels

Raises
------
ValueError
If the estimator not fitted or X has incorrect shape.
"""
check_is_fitted(self)
X = check_array(X)

y_pred = np.full(
shape=len(X), fill_value=self.classes_[0],
shape=len(X),
fill_value=self.classes_[0],
dtype=self.classes_.dtype
)

# XXX fix
# nearest neighbor for each sample using Euclidean distances
dist = X[:, np.newaxis, :] - self.X_[np.newaxis, :, :]
dists = np.sum(dist ** 2, axis=2)

# closest training point
nn_idx = np.argmin(dists, axis=1)

# pred
y_pred[:] = self.y_[nn_idx]

return y_pred

def score(self, X, y):
"""Write docstring.

And describe parameters
"""Compute the mean accuracy on the given test data and labels.

Parameters
----------
X : ndarray of shape (n_samples, n_features)
Test input
y : ndarray of shape (n_samples,)
True labels test

Returns
-------
score : float
Mean accuracy of the classifier on the test dataset

Raises
------
ValueError
If X and y have incompatible shapes.
"""
X, y = check_X_y(X, y)
y_pred = self.predict(X)

# XXX fix
return y_pred.sum()
# return accuracy
return float(np.mean(y_pred == y))