Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 39 additions & 0 deletions onnxscript/rewriter/ort_fusions/gqa.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,11 +166,23 @@ def pattern(
# Transpose from (B, S, H, D/H) to (B, H, S, D/H)
query_BHSDh = op.Transpose(query_BSHDh, perm=[0, 2, 1, 3])

# Gemma variant uses normalization of query/key before rotary embedding:
query_BHSDh_normalized = op.SimplifiedLayerNormalization(
query_BHSDh, pattern.ANY_VALUE, axis=-1, _outputs=["query_BHSDh_normalized"]
)
query_BHSDh = pattern.OrValue([query_BHSDh, query_BHSDh_normalized])

# Reshape key from (B, S, Dkv) to (B, S, Hkv, D/H)
key_BSHkvDh = op.Reshape(key_BSDkv, pattern.ANY_VALUE, _outputs=["key_BSHkvDh"])
# Transpose from (B, S, Hkv, D/H) to (B, Hkv, S, D/H)
key_BHkvSDh = op.Transpose(key_BSHkvDh, perm=[0, 2, 1, 3])

# Gemma variant uses normalization of query/key before rotary embedding:
key_BHkvSDh_normalized = op.SimplifiedLayerNormalization(
key_BHkvSDh, pattern.ANY_VALUE, axis=-1, _outputs=["key_BHkvSDh_normalized"]
)
key_BHkvSDh = pattern.OrValue([key_BHkvSDh, key_BHkvSDh_normalized])

# Reshape value from (B, S, Dkv) to (B, S, Hkv, D/H)
value_BSHkvDh = op.Reshape(value_BSDkv, pattern.ANY_VALUE, _outputs=["value_BSHkvDh"])
# Transpose from (B, S, Hkv, D/H) to (B, Hkv, S, D/H)
Expand Down Expand Up @@ -316,6 +328,10 @@ def rewrite(
cos,
sin,
mask,
query_BSHDh,
key_BSHkvDh,
query_BHSDh_normalized=None,
key_BHkvSDh_normalized=None,
**_,
):
# Note that the following optimization is specific to current ORT GenAI attention-mask
Expand All @@ -335,6 +351,29 @@ def rewrite(
seqlens_k = op.Cast(seqlens_k_int64, to=ir.DataType.INT32)
max_seq_length = op.ReduceMax(seqlens_k, zero_int64_1d, keepdims=0)
total_seq_length_int32 = op.Add(max_seq_length, one_int32_0d)

if query_BHSDh_normalized is not None:
# We apply normalization without the transpose, which is fused into GQA
norm_node = query_BHSDh_normalized.producer()
norm_attrs = norm_node.attributes
norm_scale = norm_node.inputs[1]
query_BSHDh_normalized = op.SimplifiedLayerNormalization(
query_BSHDh, norm_scale, **norm_attrs
)
reshape_BSHDh_to_BSD = op.Constant(value_ints=[0, 0, -1])
query_BSD = op.Reshape(query_BSHDh_normalized, reshape_BSHDh_to_BSD)

if key_BHkvSDh_normalized is not None:
# We apply normalization without the transpose, which is fused into GQA
norm_node = key_BHkvSDh_normalized.producer()
norm_attrs = norm_node.attributes
norm_scale = norm_node.inputs[1]
key_BSHkvDh_normalized = op.SimplifiedLayerNormalization(
key_BSHkvDh, norm_scale, **norm_attrs
)
reshape_BSHkvDh_to_BSDkv = op.Constant(value_ints=[0, 0, -1])
key_BSDkv = op.Reshape(key_BSHkvDh_normalized, reshape_BSHkvDh_to_BSDkv)

return op.GroupQueryAttention(
query_BSD,
key_BSDkv,
Expand Down
Loading