Skip to content

_extract_sampling_rate function for io.read_raw_snirf incorrectly estimates sample rate due to floating point error. #12508

@kdarti

Description

@kdarti

Description of the problem

I have a snirf file with a sample rate of 50hz, the /nirs/data1/time array is correctly incremented by 0.02 per sample, as expected.

However, when mne.io_read_raw_snirf() is used to read the file, the sample rate is estimated to be not 50Hz:

image

This is due to floating errors introduced in this section:

periods = np.diff(time_data)
uniq_periods = np.unique(periods.round(decimals=4))
if uniq_periods.size == 1:
# Uniformly sampled data
sampling_rate = 1.0 / uniq_periods.item()
else:
# Hopefully uniformly sampled data with some precision issues.
# This is a workaround to provide support for Artinis data.
mean_period = np.mean(periods)
sampling_rate = 1.0 / mean_period
ideal_times = np.linspace(time_data[0], time_data[-1], time_data.size)
max_jitter = np.max(np.abs(time_data - ideal_times))
percent_jitter = 100.0 * max_jitter / mean_period
msg = (
f"Found jitter of {percent_jitter:3f}% in sample times. Sampling "
f"rate has been set to {sampling_rate:1f}."
)

More precisely, by .np.diff() on line 541.

Easiest fix would be to use Decimal to avoid these floating point errors. using float64 should also work, at least in this case.

Steps to reproduce

import mne

mne.io.read_raw_snirf(r"WR11 Baseline SNIRF.snirf")

Link to data

WR11 Baseline SNIRF.zip

Expected results

Sample rate of 50Hz

Actual results

49.999996Hz

Additional information

Platform Windows-10-10.0.19041-SP0
Python 3.8.3 (default, Jul 2 2020, 17:30:36) [MSC v.1916 64 bit (AMD64)]
Executable C:\Users\kdahlslatt\Anaconda3\python.exe
CPU Intel64 Family 6 Model 158 Stepping 10, GenuineIntel (12 cores)
Memory 15.7 GB

Core
├☑ mne 1.6.1 (latest release)
├☑ numpy 1.24.3 (MKL 2023.1-Product with 6 threads)
├☑ scipy 1.10.1
├☑ matplotlib 3.7.1 (backend=Qt5Agg)
C:\Users\kdahlslatt\Anaconda3\lib\site-packages\paramiko\transport.py:219: CryptographyDeprecationWarning: Blowfish has been deprecated
"class": algorithms.Blowfish,
├☑ pooch 1.8.0
└☑ jinja2 3.1.2

Numerical (optional)
├☑ sklearn 1.3.0
├☑ numba 0.57.1
├☑ nibabel 3.2.1
├☑ nilearn 0.9.1
├☑ pandas 1.5.3
└☐ unavailable dipy, openmeeg, cupy

Visualization (optional)
├☑ pyvista 0.37.0 (OpenGL 4.5.0 - Build 30.0.101.1404 via Intel(R) UHD Graphics 630)
├☑ vtk 9.2.5
├☑ qtpy 2.2.0 (PyQt5=5.15.2)
├☑ ipympl 0.9.3
├☑ pyqtgraph 0.11.0
├☑ ipywidgets 8.0.4
└☐ unavailable pyvistaqt, mne-qt-browser, trame_client, trame_server, trame_vtk, trame_vuetify

Ecosystem (optional)
└☐ unavailable mne-bids, mne-nirs, mne-features, mne-connectivity, mne-icalabel, mne-bids-pipeline

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions