Skip to content

make lcmv doesn't check weight_norm parameter #5945

@jaaval

Description

@jaaval

Describe the bug

make_lcmv doesn't check the validity of weight_norm parameter.

Steps and/or code to reproduce

call make_lcmv with any invalid weight_norm name e.g. weight_norm='asdf'
Using MNE examples:

import matplotlib.pyplot as plt
import numpy as np

import mne
from mne.datasets import sample 
from mne.beamformer import make_lcmv, apply_lcmv

data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif'
fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
label_name = 'Aud-lh'
fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name
subjects_dir = data_path + '/subjects'

event_id, tmin, tmax = 1, -0.2, 0.5

# Setup for reading the raw data
raw = mne.io.read_raw_fif(raw_fname, preload=True)
raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels
events = mne.read_events(event_fname)

# Set up pick list: EEG + MEG - bad channels (modify to your needs)
picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True,
                       exclude='bads')

# Pick the channels of interest
raw.pick_channels([raw.ch_names[pick] for pick in picks])
# Re-normalize our empty-room projectors, so they are fine after subselection
raw.info.normalize_proj()

# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
                    baseline=(None, 0), preload=True, proj=True,
                    reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
evoked = epochs.average()

forward = mne.read_forward_solution(fname_fwd)
forward = mne.convert_forward_solution(forward, surf_ori=True)

# Compute regularized noise and data covariances
noise_cov = mne.compute_covariance(epochs, tmin=tmin, tmax=0, method='shrunk',
                                   rank=None)
data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.15,
                                  method='shrunk', rank=None)

pick_oris = [None, 'normal', 'max-power']
names = ['free', 'normal', 'max-power']
descriptions = ['Free orientation, voxel: %i', 'Normal orientation, voxel: %i',
                'Max-power orientation, voxel: %i']
colors = ['b', 'k', 'r']

fig, ax = plt.subplots(1)
max_voxs = list()
for pick_ori, name, desc, color in zip(pick_oris, names, descriptions, colors):
    # compute unit-noise-gain beamformer with whitening of the leadfield and
    # data (enabled by passing a noise covariance matrix)
    filters = make_lcmv(evoked.info, forward, data_cov, reg=0.05,
                        noise_cov=noise_cov, pick_ori=pick_ori,
                        weight_norm='asdf', rank=None)
    print(filters)
    # apply this spatial filter to source-reconstruct the evoked data
    stc = apply_lcmv(evoked, filters, max_ori_out='signed')

    # View activation time-series in maximum voxel at 100 ms:
    time_idx = stc.time_as_index(0.1)
    max_idx = np.argmax(np.abs(stc.data[:, time_idx]))
    

    if max_idx > len(stc.vertices[0]):
        max_voxs.append(stc.vertices[1][max_idx-len(stc.vertices[0])])
    else:
        max_voxs.append(stc.vertices[0][max_idx])
    
    ax.plot(stc.times, stc.data[max_idx, :], color, label=desc % max_idx)

ax.set(xlabel='Time (ms)', ylabel='LCMV value',
       title='LCMV in maximum voxel')
ax.legend(loc='lower right')
mne.viz.utils.plt_show()

Expected results

ValueError thrown due to not supported parameter

Actual results

There is no error or any unexpected output text if pick_ori is None or 'normal'. Just bad results. If pick_ori == 'max-power' the code crashes on power not being computed due to not passing the if statement in line 387 of _compute_beamformer.py

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions