Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 25 additions & 12 deletions textbook/chainRule/digInChainRule.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,20 @@

\input{../preamble.tex}

\outcome{Recognize a composition of functions.}
\outcome{Take derivatives of compositions of functions using the chain rule.}
\outcome{Take derivatives that require the use of multiple derivative rules.}
\outcome{Use the chain rule to calculate derivatives from a table of values.}
\outcome{Understand rate of change when quantities are dependent upon each other.}
\outcome{Use order of operations in situations requiring multiple derivative rules.}
\outcome{Justify the chain rule via the composition of linear approximations.}
\outcome{Apply chain rule to relate quantities expressed with different units.}

\title[Dig-In:]{The chain rule}

\begin{document}
\begin{abstract}
Here we compute derivatives of compositions of functions
\end{abstract}
\maketitle

Expand All @@ -24,7 +34,7 @@

While there are several different ways to differentiate this function,
if we let $f(x) = x^5$ and $g(x) = 1+2x$, then we can express $h(x) =
f(g(x))$. The question is, can we compute the derivative of a
\answer[given]{f}(\answer[given]{g}(x))$. The question is, can we compute the derivative of a
composition of functions using the derivatives of the constituents
$f(x)$ and $g(x)$? To do so, we need the \textit{chain rule}.

Expand Down Expand Up @@ -186,18 +196,19 @@
\ddx (1+2x)^5
\]


\begin{explanation}
Set $f(x) = x^5$ and $g(x) = 1+2x$, now
\[
f'(x) = 5x^4 \qquad\text{and}\qquad g'(x) = 2.
f'(x) = \answer[given]{5x^4} \qquad\text{and}\qquad g'(x) = \answer[given]{2}.
\]
Hence
\begin{align*}
\ddx (1+2x)^5 &= \ddx f(g(x))\\
&=f'(g(x))g'(x) \\
&= 5(1+2x)^4\cdot 2\\
&= 5(\answer[given]{1+2x})^4\cdot \answer[given]{2}\\
&= 10(1+2x)^4.
\end{align*}
\end{explanation}
\end{example}


Expand All @@ -209,20 +220,21 @@
\ddx \sqrt{1+\sqrt{x}}
\]


\begin{explanation}
Set
$f(x)=\sqrt{x}$ and $g(x)=1+x$. Hence,
\[
\sqrt{1+\sqrt{x}}=f(g(f(x))) \qquad\text{and}\qquad\ddx f(g(f(x))) = f'(g(f(x)))g'(f(x))f'(x).
\sqrt{1+\sqrt{x}}=f(g(\answer[given]{f}(x))) \qquad\text{and}\qquad\ddx f(g(f(x))) = f'(g(f(x)))g'(f(x))f'(x).
\]
Since
\[
f'(x) = \frac{1}{2\sqrt{x}} \qquad\text{and}\qquad g'(x) = 1
f'(x) = \answer[given]{\frac{1}{2\sqrt{x}}} \qquad\text{and}\qquad g'(x) = \answer[given]{1}
\]
We have that
\[
\ddx \sqrt{1+\sqrt{x}} = \frac{1}{2\sqrt{1+\sqrt{x}}}\cdot 1\cdot \frac{1}{2\sqrt{x}}.
\ddx \sqrt{1+\sqrt{x}} = \frac{1}{2\sqrt{1+\sqrt{x}}}\cdot 1\cdot \answer[given]{\frac{1}{2\sqrt{x}}}.
\]
\end{explanation}
\end{example}

Using the chain rule, the power rule, and the product rule it is
Expand All @@ -234,19 +246,20 @@
\ddx \frac{x^3}{x^2+1}
\]


\begin{explanation}
Rewriting this as
\[
\ddx x^3(x^2+1)^{-1},
\]
set $f(x) = x^{-1}$ and $g(x) = x^2+1$. Now
set $f(x) = \answer[given]{x^{-1}}$ and $g(x) = \answer[given]{x^2+1}$ so that $f(g(x)) = (x^2 + 1)^{-1}$. Now
\[
x^3(x^2+1)^{-1} = x^3 f(g(x)) \qquad\text{and}\qquad \ddx x^3 f(g(x)) = 3x^2f(g(x))+ x^3 f'(g(x))g'(x).
x^3(x^2+1)^{-1} = x^3 f(g(x)) \qquad\text{and}\qquad \ddx x^3 f(g(x)) = \answer[given]{3x^2} \cdot f(g(x))+ \answer[given]{x^3} \cdot f'(g(x))g'(x).
\]
Since $f'(x) = \frac{-1}{x^2}$ and $g'(x) = 2x$, write
Since $f'(x) = \answer[given]{\frac{-1}{x^2}}$ and $g'(x) = \answer[given]{2x}$, write
\[
\ddx \frac{x^3}{x^2+1} = \frac{3x^2}{x^2+1}-\frac{2x^4}{(x^2+1)^2}.
\]
\end{explanation}
\end{example}

\end{document}