-
Notifications
You must be signed in to change notification settings - Fork 6
Open
Labels
enhancementNew feature or requestNew feature or request
Description
Issue:
- Only one timestamp per sector (40/80/120 samples)
- The interpolation to generate the other timestamps does not extrapolate beyond the very first/last timestamps
- The very first/last few samples can receive the same timestamp from the interpolation.
To recreate with the PyPI version of the package:
python -m pip install openmovement
pythonThen, in Python:
from openmovement.load import CwaData
end = 10
filename = 'AX6-Sample.cwa'
with CwaData(filename, include_gyro=True, include_temperature=False) as cwa_data:
# As an ndarray of [time,accel_x,accel_y,accel_z,temperature]
sample_values = cwa_data.get_sample_values()
print('\nAs ndarray:')
print(sample_values[:end])
# As a pandas DataFrame
df = cwa_data.get_samples()
print('\nAs a pandas DataFrame')
print(df[:end])
Output:
As ndarray:
[[ 1.53029520e+09 -2.14843750e-02 1.00317383e+00 -5.17578125e-02
2.78320312e+01 1.22070312e+01 9.27734375e+00]
[ 1.53029520e+09 -3.85742188e-02 9.86328125e-01 -7.32421875e-02
2.00195312e+01 2.25830078e+00 3.05175781e+00]
[ 1.53029520e+09 -1.66015625e-02 1.01367188e+00 -2.83203125e-02
1.41601562e+01 7.93457031e-01 -6.71386719e-01]
[ 1.53029520e+09 4.88281250e-04 1.04956055e+00 3.14941406e-02
1.24511719e+01 -1.95312500e+00 -2.86865234e+00]
[ 1.53029520e+09 -3.71093750e-02 1.08081055e+00 9.15527344e-02
1.31835938e+01 -1.13525391e+01 -6.59179688e+00]
[ 1.53029520e+09 -5.32226562e-02 1.07006836e+00 1.91406250e-01
1.33666992e+01 -2.54516602e+01 -7.99560547e+00]
[ 1.53029520e+09 -1.97753906e-02 1.06103516e+00 2.80517578e-01
1.07421875e+01 -3.72924805e+01 -5.37109375e+00]
[ 1.53029520e+09 -1.78222656e-02 1.05419922e+00 2.81250000e-01
1.07421875e+01 -4.90112305e+01 -5.85937500e+00]
[ 1.53029520e+09 -9.76562500e-02 1.02343750e+00 2.13623047e-01
1.42211914e+01 -6.41479492e+01 -1.09252930e+01]
[ 1.53029520e+09 -1.34033203e-01 9.83154297e-01 1.72363281e-01
1.39160156e+01 -7.33642578e+01 -1.38549805e+01]]
As a pandas DataFrame
time accel_x accel_y accel_z gyro_x gyro_y gyro_z
0 2018-06-29 18:00:00.703765760 -0.021484 1.003174 -0.051758 27.832031 12.207031 9.277344
1 2018-06-29 18:00:00.703765760 -0.038574 0.986328 -0.073242 20.019531 2.258301 3.051758
2 2018-06-29 18:00:00.703765760 -0.016602 1.013672 -0.028320 14.160156 0.793457 -0.671387
3 2018-06-29 18:00:00.703765760 0.000488 1.049561 0.031494 12.451172 -1.953125 -2.868652
4 2018-06-29 18:00:00.703765760 -0.037109 1.080811 0.091553 13.183594 -11.352539 -6.591797
5 2018-06-29 18:00:00.703765760 -0.053223 1.070068 0.191406 13.366699 -25.451660 -7.995605
6 2018-06-29 18:00:00.703765760 -0.019775 1.061035 0.280518 10.742188 -37.292480 -5.371094
7 2018-06-29 18:00:00.709426944 -0.017822 1.054199 0.281250 10.742188 -49.011230 -5.859375
8 2018-06-29 18:00:00.715087872 -0.097656 1.023438 0.213623 14.221191 -64.147949 -10.925293
9 2018-06-29 18:00:00.720748800 -0.134033 0.983154 0.172363 13.916016 -73.364258 -13.854980
Note the first 8 samples are at the same timestamp.
Metadata
Metadata
Assignees
Labels
enhancementNew feature or requestNew feature or request