-
-
Notifications
You must be signed in to change notification settings - Fork 19.4k
Closed
Labels
BugCategoricalCategorical Data TypeCategorical Data TypeDtype ConversionsUnexpected or buggy dtype conversionsUnexpected or buggy dtype conversionsTimezonesTimezone data dtypeTimezone data dtype
Milestone
Description
In [1]: s = pd.Series(pd.Categorical(pd.date_range("2012", periods=3, tz='Europe/Brussels')))
In [2]: s.to_numpy()
Out[2]:
array(['2011-12-31T23:00:00.000000000', '2012-01-01T23:00:00.000000000',
'2012-01-02T23:00:00.000000000'], dtype='datetime64[ns]')
In [3]: s = pd.Series(pd.date_range("2012", periods=3, tz='Europe/Brussels'))
In [4]: s.to_numpy()
Out[4]:
array([Timestamp('2012-01-01 00:00:00+0100', tz='Europe/Brussels', freq='D'),
Timestamp('2012-01-02 00:00:00+0100', tz='Europe/Brussels', freq='D'),
Timestamp('2012-01-03 00:00:00+0100', tz='Europe/Brussels', freq='D')],
dtype=object)
We opted for the default behaviour of to_numpy to be as much preserving the values, so for normal datetimetz series, this is object dtype. So probably we should do the same for Categorical?
@TomAugspurger since to_numpy is still new, I suppose we can see this is as a bug fix and not change in behaviour (to not go through deprecation cycle)?
Metadata
Metadata
Assignees
Labels
BugCategoricalCategorical Data TypeCategorical Data TypeDtype ConversionsUnexpected or buggy dtype conversionsUnexpected or buggy dtype conversionsTimezonesTimezone data dtypeTimezone data dtype