Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 44 additions & 0 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -3079,6 +3079,50 @@ def dropna(self, axis=0, how='any', thresh=None, subset=None,
Returns
-------
dropped : DataFrame

Examples
--------
>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], [3, 4, np.nan, 1],
... [np.nan, np.nan, np.nan, 5]],
... columns=list('ABCD'))
>>> df
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5

Drop the columns where all elements are nan:

>>> df.dropna(axis=1, how='all')
A B D
0 NaN 2.0 0
1 3.0 4.0 1
2 NaN NaN 5

Drop the columns where any of the elements is nan

>>> df.dropna(axis=1, how='any')
D
0 0
1 1
2 5

Drop the rows where all of the elements are nan
(there is no row to drop, so df stays the same):

>>> df.dropna(axis=0, how='all')
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5

Keep only the rows with at least 2 non-na values:

>>> df.dropna(thresh=2)
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1

"""
inplace = validate_bool_kwarg(inplace, 'inplace')
if isinstance(axis, (tuple, list)):
Expand Down