Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/v0.15.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -670,3 +670,4 @@ Bug Fixes

- Bug with kde plot and NaNs (:issue:`8182`)
- Bug in ``GroupBy.count`` with float32 data type were nan values were not excluded (:issue:`8169`).
- Bug with stacked barplots and NaNs (:issue:`8175`).
38 changes: 38 additions & 0 deletions doc/source/visualization.rst
Original file line number Diff line number Diff line change
Expand Up @@ -677,6 +677,44 @@ See the `matplotlib pie documenation <http://matplotlib.org/api/pyplot_api.html#

plt.close('all')

.. _visualization.missing_data

Plotting with Missing Data
--------------------------

Pandas tries to be pragmatic about plotting DataFrames or Series
that contain missing data. Missing values are dropped, left out, or filled
depending on the plot type.

+----------------+--------------------------------------+
| Plot Type | NaN Handling |
+================+======================================+
| Line | Leave gaps at NaNs |
+----------------+--------------------------------------+
| Line (stacked) | Fill 0's |
+----------------+--------------------------------------+
| Bar | Fill 0's |
+----------------+--------------------------------------+
| Scatter | Drop NaNs |
+----------------+--------------------------------------+
| Histogram | Drop NaNs (column-wise) |
+----------------+--------------------------------------+
| Box | Drop NaNs (column-wise) |
+----------------+--------------------------------------+
| Area | Fill 0's |
+----------------+--------------------------------------+
| KDE | Drop NaNs (column-wise) |
+----------------+--------------------------------------+
| Hexbin | Drop NaNs |
+----------------+--------------------------------------+
| Pie | Fill 0's |
+----------------+--------------------------------------+

If any of these defaults are not what you want, or if you want to be
explicit about how missing values are handled, consider using
:meth:`~pandas.DataFrame.fillna` or :meth:`~pandas.DataFrame.dropna`
before plotting.

.. _visualization.tools:

Plotting Tools
Expand Down
17 changes: 17 additions & 0 deletions pandas/tests/test_graphics.py
Original file line number Diff line number Diff line change
Expand Up @@ -1479,6 +1479,23 @@ def test_bar_bottom_left(self):
result = [p.get_x() for p in ax.patches]
self.assertEqual(result, [1] * 5)

@slow
def test_bar_nan(self):
df = DataFrame({'A': [10, np.nan, 20], 'B': [5, 10, 20],
'C': [1, 2, 3]})
ax = df.plot(kind='bar')
expected = [10, 0, 20, 5, 10, 20, 1, 2, 3]
result = [p.get_height() for p in ax.patches]
self.assertEqual(result, expected)

ax = df.plot(kind='bar', stacked=True)
result = [p.get_height() for p in ax.patches]
self.assertEqual(result, expected)

result = [p.get_y() for p in ax.patches]
expected = [0.0, 0.0, 0.0, 10.0, 0.0, 20.0, 15.0, 10.0, 40.0]
self.assertEqual(result, expected)

@slow
def test_plot_scatter(self):
df = DataFrame(randn(6, 4),
Expand Down
6 changes: 4 additions & 2 deletions pandas/tools/plotting.py
Original file line number Diff line number Diff line change
Expand Up @@ -870,9 +870,11 @@ def _validate_color_args(self):
" use one or the other or pass 'style' "
"without a color symbol")

def _iter_data(self, data=None, keep_index=False):
def _iter_data(self, data=None, keep_index=False, fillna=None):
if data is None:
data = self.data
if fillna is not None:
data = data.fillna(fillna)

from pandas.core.frame import DataFrame
if isinstance(data, (Series, np.ndarray, Index)):
Expand Down Expand Up @@ -1780,7 +1782,7 @@ def _make_plot(self):
pos_prior = neg_prior = np.zeros(len(self.data))
K = self.nseries

for i, (label, y) in enumerate(self._iter_data()):
for i, (label, y) in enumerate(self._iter_data(fillna=0)):
ax = self._get_ax(i)
kwds = self.kwds.copy()
kwds['color'] = colors[i % ncolors]
Expand Down