Skip to content

Transformed Eulerian Mean #3

@dcherian

Description

@dcherian

This used to be such a pain, people were looping over a years worth of files for 60 years of data.

This is ERA5

import dask.array
import flox.xarray

dims = ("time", "level", "lat", "lon")
# nyears is number of years, adjust to make bigger, 
# full dataset is 60-ish years.
nyears = 20
shape = (nyears * 365 * 24, 37, 721, 1440)
chunks = (24, 1, -1, -1)

ds = xr.Dataset(
    {
        "U": (dims, dask.array.random.random(shape, chunks=chunks)),
        "V": (dims, dask.array.random.random(shape, chunks=chunks)),
        "W": (dims, dask.array.random.random(shape, chunks=chunks)),
        "T": (dims, dask.array.random.random(shape, chunks=chunks)),
    },
    coords={"time": pd.date_range("2001-01-01", periods=shape[0], freq="H")},
)
zonal_means = ds.mean("lon")
anomaly = ds - zonal_means

anomaly['uv'] = anomaly.U*anomaly.V
anomaly['vt'] = anomaly.V*anomaly.T
anomaly['uw'] = anomaly.U*anomaly.W

temdiags = zonal_means.merge(anomaly[['uv','vt','uw']].mean("lon"))

# note method="blockwise" uses flox
temdiags = temdiags.resample(time="D").mean(method="blockwise")
temdiags

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions