- Download model weights trained on FLAME2020 : Link and place it in 'checkpoint' folder
- Python >= 3.9 (Recommend to use Anaconda or Miniconda)
- PyTorch >= 1.13.0+cu11.7
conda create -n OFER python=3.9
conda activate OFER
conda env update --file ofer.yml --prune- Download FaRL pretrained model from Link and place it in 'pretrained' folder
- Download FLAME2020 model files from Link and place it in 'data' folder
- To train IdGen:
- Training Data:
- Obtained the data as mentioned in MICA
- Training
python trainIdGen.py --cfg './src/configs/config_flameparamdiffusion_flame23.yml' --toseed 0
- Training Data:
- To train ExpGen:
- Follow similar steps to IdGen
-
python trainExpGen.py --cfg './src/configs/config_flameparamdiffusion_exp.yml' --toseed 0
- To train IdRank:
- Training Data:
- Same data of IdGen
- Training
python trainIdRank.py --cfg './src/configs/config_flameparamrank_flame23.yml' --toseed 0
- Training Data:
-To run the demo:
python test.py --numcheckpoint 3 --cfg './src/configs/config_flameparamdiffusion_flame20.yml' --checkpoint1 'checkpoint/model_idrank.tar' --checkpoint2 'checkpoint/model_idgen_flame20.tar' --checkpoint3 'checkpoint/model_expgen_flame20.tar' --filename 'data/PICKPIK/validation/4.txt' --imagepath 'data/PICKPIK/' --outputpath 'output'-Results will be saved in 'output' folder
- Thanks to MICA for their work and code base.
Please cite for reference:
@InProceedings{pratheba2025OFER,
Author = {Selvaraju, Pratheba and Abrevaya, Victoria Fernandez and Bolkart, Timo and Akkerman, Rick and Ding, Tianyu and Amjadi, Faezeh and Zharkov, Ilya},
Title = {OFER: Occluded Face Expression Reconstruction},
Year = {2025},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025},
pages = {26985-26995},
}