Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 29 additions & 30 deletions src/squlearn/qnn/base_qnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -193,37 +193,7 @@ def fit(self, X, y, weights: np.ndarray = None) -> None:
Labels
weights: Weights for each data point
"""
self.encoding_circuit._check_feature_consistency(X)
num_features = extract_num_features(X)

self._is_lowlevel_qnn_initialized = False
self._initialize_lowlevel_qnn(num_features)

if self.param_ini is None or len(self.param_ini) != self._qnn.num_parameters:
self._param = self.encoding_circuit.generate_initial_parameters(
seed=self.parameter_seed, num_features=num_features
)
else:
self._param = self.param_ini.copy()

if (
self.param_op_ini is None
or len(self.param_op_ini) != self._qnn.num_parameters_observable
):
if isinstance(self.operator, list):
self._param_op = np.concatenate(
[
operator.generate_initial_parameters(seed=self.parameter_seed + i + 1)
for i, operator in enumerate(self.operator)
]
)
else:
self._param_op = self.operator.generate_initial_parameters(
seed=self.parameter_seed + 1
)
else:
self._param_op = self.param_op_ini.copy()

self._is_fitted = False
self._fit(X, y, weights)

Expand Down Expand Up @@ -387,6 +357,35 @@ def _initialize_lowlevel_qnn(self, num_features: int | None = None) -> None:
caching=self.caching,
primitive=self.primitive,
)

if self._is_fitted:
self._is_lowlevel_qnn_initialized = True
return

if self.param_ini is None or len(self.param_ini) != self.encoding_circuit.num_parameters:
self._param = self.encoding_circuit.generate_initial_parameters(
seed=self.parameter_seed, num_features=num_features
)
else:
self._param = self.param_ini.copy()

if (
self.param_op_ini is None
or len(self.param_op_ini) != self._qnn.num_parameters_observable
):
if isinstance(self.operator, list):
self._param_op = np.concatenate(
[
operator.generate_initial_parameters(seed=self.parameter_seed + i + 1)
for i, operator in enumerate(self.operator)
]
)
else:
self._param_op = self.operator.generate_initial_parameters(
seed=self.parameter_seed + 1
)
else:
self._param_op = self.param_op_ini.copy()
self._is_lowlevel_qnn_initialized = True

def _validate_input(self, X, y, incremental, reset):
Expand Down