Skip to content

There is error on demo.ipynb #133

@gkswns3708

Description

@gkswns3708

Hello, I am a Korean college student studying the BLIP paper. Before to start my English is limited, there may be some incorrect translations.

In HuggingFace's generation_utils.py

def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
...
if "kwargs" in model_args:
            model_args = set(inspect.signature(self.forward).parameters)
... 

They checking the unsued_model_args for validating model kwargs with "kwargs". But BLIP use "model_kwargs" on code like below

def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
    input_shape = input_ids.shape
    # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
    if attention_mask is None:
        attention_mask = input_ids.new_ones(input_shape)
    # cut decoder_input_ids if past is used
    if past is not None:
        input_ids = input_ids[:, -1:]
    return {
        "input_ids": input_ids, 
        "attention_mask": attention_mask, 
        "past_key_values": past,
        "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
        "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
        "is_decoder": True,
    }

So my opinion is just modifies model_kwargs to kwargs like below

def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **kwargs):
    input_shape = input_ids.shape
    # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
    if attention_mask is None:
        attention_mask = input_ids.new_ones(input_shape)
    # cut decoder_input_ids if past is used
    if past is not None:
        input_ids = input_ids[:, -1:]
    return {
        "input_ids": input_ids, 
        "attention_mask": attention_mask, 
        "past_key_values": past,
        "encoder_hidden_states": kwargs.get("encoder_hidden_states", None),
        "encoder_attention_mask": kwargs.get("encoder_attention_mask", None),
        "is_decoder": True,
    }

Thank you to read this issue

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions