Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 11 additions & 3 deletions sequencing/modes.py
Original file line number Diff line number Diff line change
Expand Up @@ -706,7 +706,7 @@ def anharmonicity(self, alpha):
self.kerr = alpha

@capture_operation
def rotate(self, angle, phase, pulse_name=None, **kwargs):
def rotate(self, angle, phase, pulse_name=None, unitary=False, **kwargs):
"""Generate a pulse to rotate the qubit by a given angle
about a given axis.

Expand All @@ -717,10 +717,18 @@ def rotate(self, angle, phase, pulse_name=None, **kwargs):
phase (float): Rotation axis relative to the x axis.
pulse_name (optional, str): Name of the pulse to use. If None,
will use ``self.default_pulse``. Default: None.
unitary (optional, bool): Whether to return the corresponding
unitary operator instead of executing the pulse.
Default: False.

Returns:
Operation: The resulting ``Operation`` object.
``qutip.Qobj`` or Operation: If ``unitary`` is True, returns
the unitary operator Rx(angle), otherwise returns the resulting
``Operation`` object.
"""
if unitary:
full_space = kwargs.get("full_space", True)
return self.Raxis(angle, phase, full_space=full_space)
pulse_name = pulse_name or self.default_pulse
pulse = getattr(self, pulse_name)
# Assuming that default_pulse.amp = 1 corresponds to rotation of pi
Expand Down Expand Up @@ -775,7 +783,7 @@ def rotate_y(self, angle, unitary=False, **kwargs):
if unitary:
full_space = kwargs.get("full_space", True)
return self.Ry(angle, full_space=full_space)
return self.rotate(-angle, np.pi / 2, **kwargs)
return self.rotate(angle, np.pi / 2, **kwargs)


@attr.s
Expand Down
2 changes: 1 addition & 1 deletion sequencing/pulses.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ def array_pulse(
else:
i_wave = amp * i_wave + i_noise
q_wave = amp * q_wave + q_noise
c_wave = (i_wave + 1j * q_wave) * np.exp(-1j * phase)
c_wave = (i_wave + 1j * q_wave) * np.exp(1j * phase)
return c_wave


Expand Down
147 changes: 147 additions & 0 deletions sequencing/test/test_rotations.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
import unittest
import numpy as np
import qutip
from sequencing import (
Transmon,
Cavity,
System,
Sequence,
CTerm,
Operation,
capture_operation,
get_sequence,
sync,
delay,
delay_channels,
ket2dm,
ops2dms,
)
from sequencing.sequencing import (
ValidatedList,
CompiledPulseSequence,
PulseSequence,
SyncOperation,
HamiltonianChannels,
)
from sequencing.calibration import tune_rabi


class TestSequenceVsUnitary(unittest.TestCase):
@classmethod
def setUpClass(cls):
qubit = Transmon("qubit", levels=2)
system = System("system", modes=[qubit])
_ = tune_rabi(system, system.ground_state(), plot=False, verify=False)
cls.system = system

def test_sequence_Rx(self):

system = self.system
qubit = system.qubit

init_state = system.ground_state()

angles = np.linspace(-np.pi, np.pi, 11)
for theta in angles:
seq = Sequence(system)
qubit.rotate_x(theta)
sync()
unitary = qubit.rotate_x(theta, unitary=True)

result = seq.run(init_state)
states = result.states
fidelity = qutip.fidelity(states[-1], qubit.Rx(theta) * init_state) ** 2
self.assertGreater(fidelity, 0.999)
fidelity = qutip.fidelity(states[-1], unitary * init_state) ** 2
self.assertGreater(fidelity, 0.999)

def test_sequence_Ry(self):

system = self.system
qubit = system.qubit

init_state = system.ground_state()

angles = np.linspace(-np.pi, np.pi, 11)
for theta in angles:
seq = Sequence(system)
qubit.rotate_y(theta)
sync()
unitary = qubit.rotate_y(theta, unitary=True)

result = seq.run(init_state)
states = result.states
fidelity = qutip.fidelity(states[-1], qubit.Ry(theta) * init_state) ** 2
self.assertGreater(fidelity, 0.999)
fidelity = qutip.fidelity(states[-1], unitary * init_state) ** 2
self.assertGreater(fidelity, 0.999)

def test_sequence_Raxis(self):

system = self.system
qubit = system.qubit

init_state = system.ground_state()

angles = np.linspace(-np.pi, np.pi, 11)
for theta in angles:
for phi in angles:
seq = Sequence(system)
qubit.rotate(theta, phi)
sync()
unitary = qubit.rotate(theta, phi, unitary=True)

result = seq.run(init_state)
states = result.states
fidelity = (
qutip.fidelity(states[-1], qubit.Raxis(theta, phi) * init_state)
** 2
)
self.assertGreater(fidelity, 0.999)
fidelity = qutip.fidelity(states[-1], unitary * init_state) ** 2
self.assertGreater(fidelity, 0.999)

def test_sequence_Raxis_vs_Rx_Ry(self):

system = self.system
qubit = system.qubit

init_state = system.ground_state()

angles = np.linspace(-np.pi, np.pi, 11)
for theta in angles:
# Test Raxis vs. Rx
seq = Sequence(system)
qubit.rotate(theta, 0)
sync()
unitary = qubit.rotate(theta, 0, unitary=True)

result = seq.run(init_state)
states = result.states
fidelity = qutip.fidelity(states[-1], qubit.Rx(theta) * init_state) ** 2
self.assertGreater(fidelity, 0.999)

fidelity = (
qutip.fidelity(unitary * init_state, qubit.Rx(theta) * init_state) ** 2
)
self.assertGreater(fidelity, 0.999)

# Test Raxis vs. Ry
seq = Sequence(system)
qubit.rotate(theta, np.pi / 2)
sync()
unitary = qubit.rotate(theta, np.pi / 2, unitary=True)

result = seq.run(init_state)
states = result.states
fidelity = qutip.fidelity(states[-1], qubit.Ry(theta) * init_state) ** 2
self.assertGreater(fidelity, 0.999)

fidelity = (
qutip.fidelity(unitary * init_state, qubit.Ry(theta) * init_state) ** 2
)
self.assertGreater(fidelity, 0.999)


if __name__ == "__main__":
unittest.main()