Skip to content

sonic597/classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Classification

Single-feature classification algorithm using gradient descent.

Using python libraries: Matplotlib, csv, random, and math.

Initalised to use testing data. Datapoints are plotted in blue, with the orange line being the predictions of the algorithm for the given x-value. The cost (mean squared error between predictions and given data) through interations is also graphed to track the improvement of the algorithm (the lower the better).

Adjustable Parameters

  • order: user may set the order of the polynomial used to fit the datapoints
  • batch: the number of datapoints fit by the algorithm per iteration (setting it to size works well for small datasets. Consider smaller values for large datasets)
  • lrate: learning rate. Larger values mean each iteration affects the hypothesis function to a greater extent. Values too small can result in slow convergence, values too large can overshoot the optimal hypothesis.
  • iters: the number of interations
  • detail: used for plotting. Determines the number of sample points of which the orange line is constructed. More points result in a smoother curve.

Acknowlegements

DATA.csv is a section of this breast cancer dataset.

Thanks to Andrew Ng's course on Coursera, where I learnt these techniques

About

Single-feature classification algorithm using gradient descent

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages