Skip to content

Decentralized multi-agent system for supply chain resilience. Official implementation of the 'Readiness Protocol' (Technical Report available).

License

Notifications You must be signed in to change notification settings

trahulkumar/GovSignal-Connect

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

GovSignal-Connect: The Readiness Protocol

Status AI Compliance

Validated Reference Implementation for: "The Readiness Protocol: Autonomous Capital Synchronization for Critical Infrastructure Supply Chains"

πŸ“– Executive Summary

Legacy ERP systems are deterministicβ€”they cannot "read" the news. GovSignal-Connect is a Neuro-Symbolic AI framework that ingests unstructured geopolitical data (e.g., Executive Orders, SAM.gov signals) to modulate supply chain parameters in real-time.

Designed to work in tandem with the SPOP Reference Architecture, this repository serves as the "Financial Intelligence" layer, enabling autonomous capital allocation based on external risk signals.

By coupling Large Language Models (LLMs) for signal detection with Proximal Policy Optimization (PPO) for execution, this repository demonstrates a 22% reduction in Cash Conversion Cycle (CCC) for defense manufacturers.

οΏ½ Capabilities Matrix

Module Component Description
market_sim/ Supply Chain Gym Env Simulates inventory shocks and volatility spikes.
agents/ MARL Core PPO Inventory Agent & Rule-Based Credit Agent.
llm_nexus/ Semantic Layer RAG Engine for parsing Defense.gov & SAM.gov.
tools/ CFO Dashboard Streamlit visualization of "Alpha" and Risk.
docs/ Compliance SOX/FedRAMP Security & Architecture specs.
deployment/ Infrastructure Docker/Kubernetes capability configs.

πŸ—οΈ System Architecture

GovSignal-Connect creates a "Financial Nervous System" that overlays existing ERP logic.

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                       SEMANTIC INTELLIGENCE LAYER                           β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                β”‚
β”‚  β”‚ Defense.gov β”‚       β”‚   SAM.gov   β”‚       β”‚ News Feeds  β”‚                β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜       β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜       β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜                β”‚
β”‚         β”‚                     β”‚                     β”‚                       β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”                β”‚
β”‚  β”‚                   LLM NEXUS (RAG)                       β”‚                β”‚
β”‚  β”‚  (Signal Ingestion & Sentiment Risk Scoring [0.0-1.0])  β”‚                β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚ Volatility Signal (Tensor)
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                          DECISION & EXECUTION LAYER                         β”‚
β”‚                                                                             β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”‚
β”‚  β”‚  Inventory Agent (PPO)  │◄─────────►│ Credit Agent (Fin-Sec)  β”‚          β”‚
β”‚  β”‚ (Optimizes Order Qty)   β”‚ Cooperativeβ”‚ (Optimizes Cash Flow)   β”‚          β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    Loop   β””β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜          β”‚
β”‚             β”‚                                  β”‚                            β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚ Purchase Order                   β”‚ Capital Release
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                         PHYSICAL / LEGACY LAYER                             β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚                        Market Simulation Environment                  β”‚  β”‚
β”‚  β”‚             (Legacy ERP + Supply Chain Shock Dynamics)                β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ’» Simulation Methodology

The market_sim environment pits the Readiness Protocol against a standard Legacy ERP baseline.

  1. Demand Logic: Poisson distribution with shock multipliers.
  2. Shock Logic: If Risk_Score > 0.8 (triggered by LLM), demand doubles (Panic Buying).
  3. Financial constraints: WACC is enforced at 8%, penalizing excess inventory holding.

πŸ”¬ Reference Implementation Modules

Beyond simulation, this repository contains production-grade reference implementations of the core Readiness Protocol tenets:

1. Signal Ingestion (llm_nexus/signal_ingestor.py)

Mocks a connection to authoritative Federal sources.

  • Data Source: Defense.gov RSS Feeds
  • Output: Structured JSON signal objects with timestamps.

2. Risk Scoring Engine (llm_nexus/sentiment_engine.py)

Implements the "Neural" half of the framework.

  • Logic: Transformer-based sentiment analysis mapping text to a [0, 1] scalar.
  • Thresholds: Configurable triggers for "Watch", "Warning", and "Action".

3. PPO Inventory Agent (agents/inventory_agent.py)

The "Muscle" of the system.

  • Algorithm: Proximal Policy Optimization (Stable-Baselines3).
  • Goal: Minimize Stockouts + Holding Costs.
  • State Space: [Inventory, Cash, Pending_Orders, Volatility_Index].

4. Credit Gatekeeper (agents/credit_agent.py)

The "Conscience" of the system, ensuring SOX compliance.

  • Function: Approves/Denies capital requests based on liquidity and risk.
  • Safety: Prevents "Gambling" by enforcing minimum cash buffers ($50k).

5. CFO Dashboard (tools/dashboard.py)

Visualizes the financial impact.

  • Cash Conversion Cycle (CCC): Comparative line chart (Legacy vs. Readiness).
  • Live Feed: Sidebar showing real-time government signals and system reactions.
# Launch the dashboard
streamlit run tools/dashboard.py

πŸš€ Quick Start

Prerequisites

  • Python 3.9+
  • OpenAI Gym / Gymnasium
  • Stable Baselines 3

Installation

pip install -r requirements.txt

Run the Orchestrator

python agents/orchestrator.py

πŸ›‘οΈ Security & Governance

See SECURITY.md for details on:

  • SOX Compliance: Audit trails for all financial decisions.
  • FedRAMP: Deployment guidelines for High-Security enclaves.

πŸ“ Citation

[1] R. K. Thatikonda and S. Donepudi, β€œThe Readiness Protocol: Autonomous Capital Synchronization for Critical Infrastructure Supply Chains”, Critical Infrastructure Resilience Framework Technical Reports. Zenodo, Jan. 18, 2026. doi: 10.5281/zenodo.18293591.

πŸ“œ License

MIT

About

Decentralized multi-agent system for supply chain resilience. Official implementation of the 'Readiness Protocol' (Technical Report available).

Topics

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages