Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
328 changes: 328 additions & 0 deletions src/validator/stealthAddressValidator/EllipticCurve.sol
Original file line number Diff line number Diff line change
@@ -0,0 +1,328 @@
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
* @title Elliptic Curve Library
* @dev Library providing arithmetic operations over elliptic curves.
* This library does not check whether the inserted points belong to the curve
* `isOnCurve` function should be used by the library user to check the aforementioned statement.
* @author Witnet Foundation
*/
library EllipticCurve {
// Pre-computed constant for 2 ** 255
uint256 private constant U255_MAX_PLUS_1 =
57896044618658097711785492504343953926634992332820282019728792003956564819968;

/// @dev Modular euclidean inverse of a number (mod p).
/// @param _x The number
/// @param _pp The modulus
/// @return q such that x*q = 1 (mod _pp)
function invMod(uint256 _x, uint256 _pp) internal pure returns (uint256) {
require(_x != 0 && _x != _pp && _pp != 0, "Invalid number");
uint256 q = 0;
uint256 newT = 1;
uint256 r = _pp;
uint256 t;
while (_x != 0) {
t = r / _x;
(q, newT) = (newT, addmod(q, (_pp - mulmod(t, newT, _pp)), _pp));
(r, _x) = (_x, r - t * _x);
}

return q;
}

/// @dev Modular exponentiation, b^e % _pp.
/// Source: https://github.com/androlo/standard-contracts/blob/master/contracts/src/crypto/ECCMath.sol
/// @param _base base
/// @param _exp exponent
/// @param _pp modulus
/// @return r such that r = b**e (mod _pp)
function expMod(uint256 _base, uint256 _exp, uint256 _pp) internal pure returns (uint256) {
require(_pp != 0, "EllipticCurve: modulus is zero");

if (_base == 0) return 0;
if (_exp == 0) return 1;

uint256 r = 1;
uint256 bit = U255_MAX_PLUS_1;
assembly {
for {} gt(bit, 0) {} {
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, bit)))), _pp)
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, div(bit, 2))))), _pp)
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, div(bit, 4))))), _pp)
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, div(bit, 8))))), _pp)
bit := div(bit, 16)
}
}

return r;
}

/// @dev Converts a point (x, y, z) expressed in Jacobian coordinates to affine coordinates (x', y', 1).
/// @param _x coordinate x
/// @param _y coordinate y
/// @param _z coordinate z
/// @param _pp the modulus
/// @return (x', y') affine coordinates
function toAffine(uint256 _x, uint256 _y, uint256 _z, uint256 _pp) internal pure returns (uint256, uint256) {
uint256 zInv = invMod(_z, _pp);
uint256 zInv2 = mulmod(zInv, zInv, _pp);
uint256 x2 = mulmod(_x, zInv2, _pp);
uint256 y2 = mulmod(_y, mulmod(zInv, zInv2, _pp), _pp);

return (x2, y2);
}

/// @dev Derives the y coordinate from a compressed-format point x [[SEC-1]](https://www.secg.org/SEC1-Ver-1.0.pdf).
/// @param _prefix parity byte (0x02 even, 0x03 odd)
/// @param _x coordinate x
/// @param _aa constant of curve
/// @param _bb constant of curve
/// @param _pp the modulus
/// @return y coordinate y
function deriveY(uint8 _prefix, uint256 _x, uint256 _aa, uint256 _bb, uint256 _pp)
internal
pure
returns (uint256)
{
require(_prefix == 0x02 || _prefix == 0x03, "EllipticCurve:innvalid compressed EC point prefix");

// x^3 + ax + b
uint256 y2 = addmod(mulmod(_x, mulmod(_x, _x, _pp), _pp), addmod(mulmod(_x, _aa, _pp), _bb, _pp), _pp);
y2 = expMod(y2, (_pp + 1) / 4, _pp);
// uint256 cmp = yBit ^ y_ & 1;
uint256 y = (y2 + _prefix) % 2 == 0 ? y2 : _pp - y2;

return y;
}

/// @dev Check whether point (x,y) is on curve defined by a, b, and _pp.
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @param _aa constant of curve
/// @param _bb constant of curve
/// @param _pp the modulus
/// @return true if x,y in the curve, false else
function isOnCurve(uint256 _x, uint256 _y, uint256 _aa, uint256 _bb, uint256 _pp) internal pure returns (bool) {
if (0 == _x || _x >= _pp || 0 == _y || _y >= _pp) {
return false;
}
// y^2
uint256 lhs = mulmod(_y, _y, _pp);
// x^3
uint256 rhs = mulmod(mulmod(_x, _x, _pp), _x, _pp);
if (_aa != 0) {
// x^3 + a*x
rhs = addmod(rhs, mulmod(_x, _aa, _pp), _pp);
}
if (_bb != 0) {
// x^3 + a*x + b
rhs = addmod(rhs, _bb, _pp);
}

return lhs == rhs;
}

/// @dev Calculate inverse (x, -y) of point (x, y).
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @param _pp the modulus
/// @return (x, -y)
function ecInv(uint256 _x, uint256 _y, uint256 _pp) internal pure returns (uint256, uint256) {
return (_x, (_pp - _y) % _pp);
}

/// @dev Add two points (x1, y1) and (x2, y2) in affine coordinates.
/// @param _x1 coordinate x of P1
/// @param _y1 coordinate y of P1
/// @param _x2 coordinate x of P2
/// @param _y2 coordinate y of P2
/// @param _aa constant of the curve
/// @param _pp the modulus
/// @return (qx, qy) = P1+P2 in affine coordinates
function ecAdd(uint256 _x1, uint256 _y1, uint256 _x2, uint256 _y2, uint256 _aa, uint256 _pp)
internal
pure
returns (uint256, uint256)
{
uint256 x = 0;
uint256 y = 0;
uint256 z = 0;

// Double if x1==x2 else add
if (_x1 == _x2) {
// y1 = -y2 mod p
if (addmod(_y1, _y2, _pp) == 0) {
return (0, 0);
} else {
// P1 = P2
(x, y, z) = jacDouble(_x1, _y1, 1, _aa, _pp);
}
} else {
(x, y, z) = jacAdd(_x1, _y1, 1, _x2, _y2, 1, _pp);
}
// Get back to affine
return toAffine(x, y, z, _pp);
}

/// @dev Substract two points (x1, y1) and (x2, y2) in affine coordinates.
/// @param _x1 coordinate x of P1
/// @param _y1 coordinate y of P1
/// @param _x2 coordinate x of P2
/// @param _y2 coordinate y of P2
/// @param _aa constant of the curve
/// @param _pp the modulus
/// @return (qx, qy) = P1-P2 in affine coordinates
function ecSub(uint256 _x1, uint256 _y1, uint256 _x2, uint256 _y2, uint256 _aa, uint256 _pp)
internal
pure
returns (uint256, uint256)
{
// invert square
(uint256 x, uint256 y) = ecInv(_x2, _y2, _pp);
// P1-square
return ecAdd(_x1, _y1, x, y, _aa, _pp);
}

/// @dev Multiply point (x1, y1, z1) times d in affine coordinates.
/// @param _k scalar to multiply
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @param _aa constant of the curve
/// @param _pp the modulus
/// @return (qx, qy) = d*P in affine coordinates
function ecMul(uint256 _k, uint256 _x, uint256 _y, uint256 _aa, uint256 _pp)
internal
pure
returns (uint256, uint256)
{
// Jacobian multiplication
(uint256 x1, uint256 y1, uint256 z1) = jacMul(_k, _x, _y, 1, _aa, _pp);
// Get back to affine
return toAffine(x1, y1, z1, _pp);
}

/// @dev Adds two points (x1, y1, z1) and (x2 y2, z2).
/// @param _x1 coordinate x of P1
/// @param _y1 coordinate y of P1
/// @param _z1 coordinate z of P1
/// @param _x2 coordinate x of square
/// @param _y2 coordinate y of square
/// @param _z2 coordinate z of square
/// @param _pp the modulus
/// @return (qx, qy, qz) P1+square in Jacobian
function jacAdd(uint256 _x1, uint256 _y1, uint256 _z1, uint256 _x2, uint256 _y2, uint256 _z2, uint256 _pp)
internal
pure
returns (uint256, uint256, uint256)
{
if (_x1 == 0 && _y1 == 0) return (_x2, _y2, _z2);
if (_x2 == 0 && _y2 == 0) return (_x1, _y1, _z1);

// We follow the equations described in https://pdfs.semanticscholar.org/5c64/29952e08025a9649c2b0ba32518e9a7fb5c2.pdf Section 5
uint256[4] memory zs; // z1^2, z1^3, z2^2, z2^3
zs[0] = mulmod(_z1, _z1, _pp);
zs[1] = mulmod(_z1, zs[0], _pp);
zs[2] = mulmod(_z2, _z2, _pp);
zs[3] = mulmod(_z2, zs[2], _pp);

// u1, s1, u2, s2
zs = [mulmod(_x1, zs[2], _pp), mulmod(_y1, zs[3], _pp), mulmod(_x2, zs[0], _pp), mulmod(_y2, zs[1], _pp)];

// In case of zs[0] == zs[2] && zs[1] == zs[3], double function should be used
require(zs[0] != zs[2] || zs[1] != zs[3], "Use jacDouble function instead");

uint256[4] memory hr;
//h
hr[0] = addmod(zs[2], _pp - zs[0], _pp);
//r
hr[1] = addmod(zs[3], _pp - zs[1], _pp);
//h^2
hr[2] = mulmod(hr[0], hr[0], _pp);
// h^3
hr[3] = mulmod(hr[2], hr[0], _pp);
// qx = -h^3 -2u1h^2+r^2
uint256 qx = addmod(mulmod(hr[1], hr[1], _pp), _pp - hr[3], _pp);
qx = addmod(qx, _pp - mulmod(2, mulmod(zs[0], hr[2], _pp), _pp), _pp);
// qy = -s1*z1*h^3+r(u1*h^2 -x^3)
uint256 qy = mulmod(hr[1], addmod(mulmod(zs[0], hr[2], _pp), _pp - qx, _pp), _pp);
qy = addmod(qy, _pp - mulmod(zs[1], hr[3], _pp), _pp);
// qz = h*z1*z2
uint256 qz = mulmod(hr[0], mulmod(_z1, _z2, _pp), _pp);
return (qx, qy, qz);
}

/// @dev Doubles a points (x, y, z).
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @param _z coordinate z of P1
/// @param _aa the a scalar in the curve equation
/// @param _pp the modulus
/// @return (qx, qy, qz) 2P in Jacobian
function jacDouble(uint256 _x, uint256 _y, uint256 _z, uint256 _aa, uint256 _pp)
internal
pure
returns (uint256, uint256, uint256)
{
if (_z == 0) return (_x, _y, _z);

// We follow the equations described in https://pdfs.semanticscholar.org/5c64/29952e08025a9649c2b0ba32518e9a7fb5c2.pdf Section 5
// Note: there is a bug in the paper regarding the m parameter, M=3*(x1^2)+a*(z1^4)
// x, y, z at this point represent the squares of _x, _y, _z
uint256 x = mulmod(_x, _x, _pp); //x1^2
uint256 y = mulmod(_y, _y, _pp); //y1^2
uint256 z = mulmod(_z, _z, _pp); //z1^2

// s
uint256 s = mulmod(4, mulmod(_x, y, _pp), _pp);
// m
uint256 m = addmod(mulmod(3, x, _pp), mulmod(_aa, mulmod(z, z, _pp), _pp), _pp);

// x, y, z at this point will be reassigned and rather represent qx, qy, qz from the paper
// This allows to reduce the gas cost and stack footprint of the algorithm
// qx
x = addmod(mulmod(m, m, _pp), _pp - addmod(s, s, _pp), _pp);
// qy = -8*y1^4 + M(S-T)
y = addmod(mulmod(m, addmod(s, _pp - x, _pp), _pp), _pp - mulmod(8, mulmod(y, y, _pp), _pp), _pp);
// qz = 2*y1*z1
z = mulmod(2, mulmod(_y, _z, _pp), _pp);

return (x, y, z);
}

/// @dev Multiply point (x, y, z) times d.
/// @param _d scalar to multiply
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @param _z coordinate z of P1
/// @param _aa constant of curve
/// @param _pp the modulus
/// @return (qx, qy, qz) d*P1 in Jacobian
function jacMul(uint256 _d, uint256 _x, uint256 _y, uint256 _z, uint256 _aa, uint256 _pp)
internal
pure
returns (uint256, uint256, uint256)
{
// Early return in case that `_d == 0`
if (_d == 0) {
return (_x, _y, _z);
}

uint256 remaining = _d;
uint256 qx = 0;
uint256 qy = 0;
uint256 qz = 1;

// Double and add algorithm
while (remaining != 0) {
if ((remaining & 1) != 0) {
(qx, qy, qz) = jacAdd(qx, qy, qz, _x, _y, _z, _pp);
}
remaining = remaining / 2;
(_x, _y, _z) = jacDouble(_x, _y, _z, _aa, _pp);
}
return (qx, qy, qz);
}
}
Loading