Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 16 additions & 12 deletions monai/losses/image_dissimilarity.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ def __init__(
kernel_size: int = 3,
kernel_type: str = "rectangular",
reduction: Union[LossReduction, str] = LossReduction.MEAN,
smooth_nr: float = 1e-5,
smooth_nr: float = 0.0,
smooth_dr: float = 1e-5,
) -> None:
"""
Expand Down Expand Up @@ -96,6 +96,7 @@ def __init__(

_kernel = look_up_option(kernel_type, kernel_dict)
self.kernel = _kernel(self.kernel_size)
self.kernel.require_grads = False
self.kernel_vol = self.get_kernel_vol()

self.smooth_nr = float(smooth_nr)
Expand All @@ -120,14 +121,15 @@ def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
if target.shape != pred.shape:
raise ValueError(f"ground truth has differing shape ({target.shape}) from pred ({pred.shape})")

t2, p2, tp = target**2, pred**2, target * pred
t2, p2, tp = target * target, pred * pred, target * pred
kernel, kernel_vol = self.kernel.to(pred), self.kernel_vol.to(pred)
kernels = [kernel] * self.ndim
# sum over kernel
t_sum = separable_filtering(target, kernels=[kernel.to(pred)] * self.ndim)
p_sum = separable_filtering(pred, kernels=[kernel.to(pred)] * self.ndim)
t2_sum = separable_filtering(t2, kernels=[kernel.to(pred)] * self.ndim)
p2_sum = separable_filtering(p2, kernels=[kernel.to(pred)] * self.ndim)
tp_sum = separable_filtering(tp, kernels=[kernel.to(pred)] * self.ndim)
t_sum = separable_filtering(target, kernels=kernels)
p_sum = separable_filtering(pred, kernels=kernels)
t2_sum = separable_filtering(t2, kernels=kernels)
p2_sum = separable_filtering(p2, kernels=kernels)
tp_sum = separable_filtering(tp, kernels=kernels)

# average over kernel
t_avg = t_sum / kernel_vol
Expand All @@ -143,11 +145,13 @@ def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
# = sum[t*p] - sum[t] * mean[p] = cross
# the following is actually squared ncc
cross = tp_sum - p_avg * t_sum
t_var = t2_sum - t_avg * t_sum # std[t] ** 2
p_var = p2_sum - p_avg * p_sum # std[p] ** 2
t_var = torch.max(t_var, torch.zeros_like(t_var))
p_var = torch.max(p_var, torch.zeros_like(p_var))
ncc: torch.Tensor = (cross * cross + self.smooth_nr) / (t_var * p_var + self.smooth_dr)
t_var = torch.max(
t2_sum - t_avg * t_sum, torch.as_tensor(self.smooth_dr, dtype=t2_sum.dtype, device=t2_sum.device)
)
p_var = torch.max(
p2_sum - p_avg * p_sum, torch.as_tensor(self.smooth_dr, dtype=p2_sum.dtype, device=p2_sum.device)
)
ncc: torch.Tensor = (cross * cross + self.smooth_nr) / (t_var * p_var)

if self.reduction == LossReduction.SUM.value:
return torch.sum(ncc).neg() # sum over the batch, channel and spatial ndims
Expand Down
19 changes: 14 additions & 5 deletions monai/networks/blocks/warp.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,13 +82,21 @@ def __init__(self, mode=GridSampleMode.BILINEAR.value, padding_mode=GridSamplePa
else:
self._padding_mode = GridSamplePadMode(padding_mode).value

@staticmethod
def get_reference_grid(ddf: torch.Tensor) -> torch.Tensor:
self.ref_grid = None

def get_reference_grid(self, ddf: torch.Tensor) -> torch.Tensor:
if (
self.ref_grid is not None
and self.ref_grid.shape[0] == ddf.shape[0]
and self.ref_grid.shape[1:] == ddf.shape[2:]
):
return self.ref_grid # type: ignore
mesh_points = [torch.arange(0, dim) for dim in ddf.shape[2:]]
grid = torch.stack(meshgrid_ij(*mesh_points), dim=0) # (spatial_dims, ...)
grid = torch.stack([grid] * ddf.shape[0], dim=0) # (batch, spatial_dims, ...)
grid = grid.to(ddf)
return grid
self.ref_grid = grid.to(ddf)
self.ref_grid.requires_grad = False
return self.ref_grid

def forward(self, image: torch.Tensor, ddf: torch.Tensor):
"""
Expand All @@ -105,7 +113,8 @@ def forward(self, image: torch.Tensor, ddf: torch.Tensor):
ddf_shape = (image.shape[0], spatial_dims) + tuple(image.shape[2:])
if ddf.shape != ddf_shape:
raise ValueError(
f"Given input {spatial_dims}-d image shape {image.shape}, " f"the input DDF shape must be {ddf_shape}."
f"Given input {spatial_dims}-d image shape {image.shape}, the input DDF shape must be {ddf_shape}, "
f"Got {ddf.shape} instead."
)
grid = self.get_reference_grid(ddf) + ddf
grid = grid.permute([0] + list(range(2, 2 + spatial_dims)) + [1]) # (batch, ..., spatial_dims)
Expand Down
8 changes: 8 additions & 0 deletions tests/test_local_normalized_cross_correlation_loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,14 @@
},
-1.0,
],
[
{"spatial_dims": 1, "kernel_type": "triangular", "smooth_dr": 0.1},
{
"pred": torch.zeros(1, 2, 3).reshape(1, 1, -1).to(dtype=torch.float, device=device),
"target": torch.zeros(1, 2, 3).reshape(1, 1, -1).to(dtype=torch.float, device=device),
},
0.0,
],
[
{"spatial_dims": 2, "kernel_type": "rectangular"},
{
Expand Down