Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions monai/inferers/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@


def sliding_window_inference(
inputs: torch.Tensor,
inputs: torch.Tensor | MetaTensor,
roi_size: Sequence[int] | int,
sw_batch_size: int,
predictor: Callable[..., torch.Tensor | Sequence[torch.Tensor] | dict[Any, torch.Tensor]],
Expand Down Expand Up @@ -307,9 +307,11 @@ def sliding_window_inference(
output_image_list[ss] = output_i[(slice(None), slice(None), *final_slicing)]

final_output = _pack_struct(output_image_list, dict_keys)
final_output = convert_to_dst_type(final_output, inputs, device=device)[0]
if temp_meta is not None:
final_output = MetaTensor(final_output).copy_meta_from(temp_meta)
final_output = convert_to_dst_type(final_output, temp_meta, device=device)[0] # type: ignore
else:
final_output = convert_to_dst_type(final_output, inputs, device=device)[0]

return final_output # type: ignore


Expand Down
8 changes: 6 additions & 2 deletions tests/test_sliding_window_hovernet_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
from parameterized import parameterized

from monai.apps.pathology.inferers import SlidingWindowHoVerNetInferer
from monai.data import MetaTensor
from monai.inferers import sliding_window_inference
from monai.utils import optional_import
from tests.test_sliding_window_inference import TEST_CASES
Expand All @@ -31,6 +32,8 @@
["hover", (1, 3, 16, 8), (4, 4), 7, 0.5, "constant", torch.device("cpu:0"), (1,) * 4],
]

TEST_CASES_MULTIOUTPUT = [[torch.ones((1, 6, 20, 20))], [MetaTensor(torch.ones((1, 6, 20, 20)))]]


class TestSlidingWindowHoVerNetInference(unittest.TestCase):
@parameterized.expand(TEST_CASES_PADDING)
Expand Down Expand Up @@ -245,9 +248,10 @@ def compute(data, test1, test2):
)(inputs, compute, t1, test2=t2)
np.testing.assert_allclose(result.cpu().numpy(), expected, rtol=1e-4)

def test_multioutput(self):
@parameterized.expand(TEST_CASES_MULTIOUTPUT)
def test_multioutput(self, inputs):
device = "cuda" if torch.cuda.is_available() else "cpu:0"
inputs = torch.ones((1, 6, 20, 20)).to(device=device)
inputs = inputs.to(device=device)
roi_shape = (8, 8)
sw_batch_size = 10

Expand Down