Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 30 additions & 30 deletions tests/test_clip_intensity_percentiles.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,12 @@

import unittest

import numpy as np
import torch
from parameterized import parameterized

from monai.transforms import ClipIntensityPercentiles
from monai.transforms.utils import soft_clip
from monai.transforms.utils_pytorch_numpy_unification import clip
from monai.transforms.utils_pytorch_numpy_unification import clip, percentile
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, NumpyImageTestCase3D, assert_allclose


Expand All @@ -28,35 +28,35 @@ def test_hard_clipping_two_sided(self, p):
hard_clipper = ClipIntensityPercentiles(upper=95, lower=5)
im = p(self.imt)
result = hard_clipper(im)
lower, upper = np.percentile(self.imt, (5, 95))
expected = clip(self.imt, lower, upper)
lower, upper = percentile(im, (5, 95))
expected = clip(im, lower, upper)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-7, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_hard_clipping_one_sided_high(self, p):
hard_clipper = ClipIntensityPercentiles(upper=95, lower=None)
im = p(self.imt)
result = hard_clipper(im)
lower, upper = np.percentile(self.imt, (0, 95))
expected = clip(self.imt, lower, upper)
lower, upper = percentile(im, (0, 95))
expected = clip(im, lower, upper)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-7, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_hard_clipping_one_sided_low(self, p):
hard_clipper = ClipIntensityPercentiles(upper=None, lower=5)
im = p(self.imt)
result = hard_clipper(im)
lower, upper = np.percentile(self.imt, (5, 100))
expected = clip(self.imt, lower, upper)
lower, upper = percentile(im, (5, 100))
expected = clip(im, lower, upper)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-7, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_soft_clipping_two_sided(self, p):
soft_clipper = ClipIntensityPercentiles(upper=95, lower=5, sharpness_factor=1.0)
im = p(self.imt)
result = soft_clipper(im)
lower, upper = np.percentile(self.imt, (5, 95))
expected = soft_clip(self.imt, sharpness_factor=1.0, minv=lower, maxv=upper)
lower, upper = percentile(im, (5, 95))
expected = soft_clip(im, sharpness_factor=1.0, minv=lower, maxv=upper, dtype=torch.float32)
# the rtol is set to 1e-6 because the logaddexp function used in softplus is not stable accross torch and numpy
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-6, atol=0)

Expand All @@ -65,8 +65,8 @@ def test_soft_clipping_one_sided_high(self, p):
soft_clipper = ClipIntensityPercentiles(upper=95, lower=None, sharpness_factor=1.0)
im = p(self.imt)
result = soft_clipper(im)
upper = np.percentile(self.imt, 95)
expected = soft_clip(self.imt, sharpness_factor=1.0, minv=None, maxv=upper)
upper = percentile(im, 95)
expected = soft_clip(im, sharpness_factor=1.0, minv=None, maxv=upper, dtype=torch.float32)
# the rtol is set to 5e-5 because the logaddexp function used in softplus is not stable accross torch and numpy
assert_allclose(result, p(expected), type_test="tensor", rtol=5e-5, atol=0)

Expand All @@ -75,8 +75,8 @@ def test_soft_clipping_one_sided_low(self, p):
soft_clipper = ClipIntensityPercentiles(upper=None, lower=5, sharpness_factor=1.0)
im = p(self.imt)
result = soft_clipper(im)
lower = np.percentile(self.imt, 5)
expected = soft_clip(self.imt, sharpness_factor=1.0, minv=lower, maxv=None)
lower = percentile(im, 5)
expected = soft_clip(im, sharpness_factor=1.0, minv=lower, maxv=None, dtype=torch.float32)
# the rtol is set to 1e-6 because the logaddexp function used in softplus is not stable accross torch and numpy
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-6, atol=0)

Expand All @@ -85,8 +85,8 @@ def test_channel_wise(self, p):
clipper = ClipIntensityPercentiles(upper=95, lower=5, channel_wise=True)
im = p(self.imt)
result = clipper(im)
for i, c in enumerate(self.imt):
lower, upper = np.percentile(c, (5, 95))
for i, c in enumerate(im):
lower, upper = percentile(c, (5, 95))
expected = clip(c, lower, upper)
assert_allclose(result[i], p(expected), type_test="tensor", rtol=1e-7, atol=0)

Expand Down Expand Up @@ -118,35 +118,35 @@ def test_hard_clipping_two_sided(self, p):
hard_clipper = ClipIntensityPercentiles(upper=95, lower=5)
im = p(self.imt)
result = hard_clipper(im)
lower, upper = np.percentile(self.imt, (5, 95))
expected = clip(self.imt, lower, upper)
lower, upper = percentile(im, (5, 95))
expected = clip(im, lower, upper)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-7, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_hard_clipping_one_sided_high(self, p):
hard_clipper = ClipIntensityPercentiles(upper=95, lower=None)
im = p(self.imt)
result = hard_clipper(im)
lower, upper = np.percentile(self.imt, (0, 95))
expected = clip(self.imt, lower, upper)
lower, upper = percentile(im, (0, 95))
expected = clip(im, lower, upper)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-7, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_hard_clipping_one_sided_low(self, p):
hard_clipper = ClipIntensityPercentiles(upper=None, lower=5)
im = p(self.imt)
result = hard_clipper(im)
lower, upper = np.percentile(self.imt, (5, 100))
expected = clip(self.imt, lower, upper)
lower, upper = percentile(im, (5, 100))
expected = clip(im, lower, upper)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-7, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_soft_clipping_two_sided(self, p):
soft_clipper = ClipIntensityPercentiles(upper=95, lower=5, sharpness_factor=1.0)
im = p(self.imt)
result = soft_clipper(im)
lower, upper = np.percentile(self.imt, (5, 95))
expected = soft_clip(self.imt, sharpness_factor=1.0, minv=lower, maxv=upper)
lower, upper = percentile(im, (5, 95))
expected = soft_clip(im, sharpness_factor=1.0, minv=lower, maxv=upper, dtype=torch.float32)
# the rtol is set to 1e-6 because the logaddexp function used in softplus is not stable accross torch and numpy
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-6, atol=0)

Expand All @@ -155,8 +155,8 @@ def test_soft_clipping_one_sided_high(self, p):
soft_clipper = ClipIntensityPercentiles(upper=95, lower=None, sharpness_factor=1.0)
im = p(self.imt)
result = soft_clipper(im)
upper = np.percentile(self.imt, 95)
expected = soft_clip(self.imt, sharpness_factor=1.0, minv=None, maxv=upper)
upper = percentile(im, 95)
expected = soft_clip(im, sharpness_factor=1.0, minv=None, maxv=upper, dtype=torch.float32)
# the rtol is set to 5e-5 because the logaddexp function used in softplus is not stable accross torch and numpy
assert_allclose(result, p(expected), type_test="tensor", rtol=5e-5, atol=0)

Expand All @@ -165,8 +165,8 @@ def test_soft_clipping_one_sided_low(self, p):
soft_clipper = ClipIntensityPercentiles(upper=None, lower=5, sharpness_factor=1.0)
im = p(self.imt)
result = soft_clipper(im)
lower = np.percentile(self.imt, 5)
expected = soft_clip(self.imt, sharpness_factor=1.0, minv=lower, maxv=None)
lower = percentile(im, 5)
expected = soft_clip(im, sharpness_factor=1.0, minv=lower, maxv=None, dtype=torch.float32)
# the rtol is set to 1e-6 because the logaddexp function used in softplus is not stable accross torch and numpy
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-6, atol=0)

Expand All @@ -175,8 +175,8 @@ def test_channel_wise(self, p):
clipper = ClipIntensityPercentiles(upper=95, lower=5, channel_wise=True)
im = p(self.imt)
result = clipper(im)
for i, c in enumerate(self.imt):
lower, upper = np.percentile(c, (5, 95))
for i, c in enumerate(im):
lower, upper = percentile(c, (5, 95))
expected = clip(c, lower, upper)
assert_allclose(result[i], p(expected), type_test="tensor", rtol=1e-7, atol=0)

Expand Down
60 changes: 30 additions & 30 deletions tests/test_clip_intensity_percentilesd.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,12 +13,12 @@

import unittest

import numpy as np
import torch
from parameterized import parameterized

from monai.transforms import ClipIntensityPercentilesd
from monai.transforms.utils import soft_clip
from monai.transforms.utils_pytorch_numpy_unification import clip
from monai.transforms.utils_pytorch_numpy_unification import clip, percentile
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, NumpyImageTestCase3D, assert_allclose


Expand All @@ -30,8 +30,8 @@ def test_hard_clipping_two_sided(self, p):
hard_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=5)
im = p(self.imt)
result = hard_clipper({key: im})
lower, upper = np.percentile(self.imt, (5, 95))
expected = clip(self.imt, lower, upper)
lower, upper = percentile(im, (5, 95))
expected = clip(im, lower, upper)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-7, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
Expand All @@ -40,8 +40,8 @@ def test_hard_clipping_one_sided_high(self, p):
hard_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=None)
im = p(self.imt)
result = hard_clipper({key: im})
lower, upper = np.percentile(self.imt, (0, 95))
expected = clip(self.imt, lower, upper)
lower, upper = percentile(im, (0, 95))
expected = clip(im, lower, upper)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-7, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
Expand All @@ -50,8 +50,8 @@ def test_hard_clipping_one_sided_low(self, p):
hard_clipper = ClipIntensityPercentilesd(keys=[key], upper=None, lower=5)
im = p(self.imt)
result = hard_clipper({key: im})
lower, upper = np.percentile(self.imt, (5, 100))
expected = clip(self.imt, lower, upper)
lower, upper = percentile(im, (5, 100))
expected = clip(im, lower, upper)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-7, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
Expand All @@ -60,8 +60,8 @@ def test_soft_clipping_two_sided(self, p):
soft_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=5, sharpness_factor=1.0)
im = p(self.imt)
result = soft_clipper({key: im})
lower, upper = np.percentile(self.imt, (5, 95))
expected = soft_clip(self.imt, sharpness_factor=1.0, minv=lower, maxv=upper)
lower, upper = percentile(im, (5, 95))
expected = soft_clip(im, sharpness_factor=1.0, minv=lower, maxv=upper, dtype=torch.float32)
# the rtol is set to 1e-6 because the logaddexp function used in softplus is not stable accross torch and numpy
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-6, atol=0)

Expand All @@ -71,8 +71,8 @@ def test_soft_clipping_one_sided_high(self, p):
soft_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=None, sharpness_factor=1.0)
im = p(self.imt)
result = soft_clipper({key: im})
upper = np.percentile(self.imt, 95)
expected = soft_clip(self.imt, sharpness_factor=1.0, minv=None, maxv=upper)
upper = percentile(im, 95)
expected = soft_clip(im, sharpness_factor=1.0, minv=None, maxv=upper, dtype=torch.float32)
# the rtol is set to 5e-5 because the logaddexp function used in softplus is not stable accross torch and numpy
assert_allclose(result[key], p(expected), type_test="tensor", rtol=5e-5, atol=0)

Expand All @@ -82,8 +82,8 @@ def test_soft_clipping_one_sided_low(self, p):
soft_clipper = ClipIntensityPercentilesd(keys=[key], upper=None, lower=5, sharpness_factor=1.0)
im = p(self.imt)
result = soft_clipper({key: im})
lower = np.percentile(self.imt, 5)
expected = soft_clip(self.imt, sharpness_factor=1.0, minv=lower, maxv=None)
lower = percentile(im, 5)
expected = soft_clip(im, sharpness_factor=1.0, minv=lower, maxv=None, dtype=torch.float32)
# the rtol is set to 1e-6 because the logaddexp function used in softplus is not stable accross torch and numpy
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-6, atol=0)

Expand All @@ -93,8 +93,8 @@ def test_channel_wise(self, p):
clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=5, channel_wise=True)
im = p(self.imt)
result = clipper({key: im})
for i, c in enumerate(self.imt):
lower, upper = np.percentile(c, (5, 95))
for i, c in enumerate(im):
lower, upper = percentile(c, (5, 95))
expected = clip(c, lower, upper)
assert_allclose(result[key][i], p(expected), type_test="tensor", rtol=1e-7, atol=0)

Expand Down Expand Up @@ -132,8 +132,8 @@ def test_hard_clipping_two_sided(self, p):
hard_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=5)
im = p(self.imt)
result = hard_clipper({key: im})
lower, upper = np.percentile(self.imt, (5, 95))
expected = clip(self.imt, lower, upper)
lower, upper = percentile(im, (5, 95))
expected = clip(im, lower, upper)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-7, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
Expand All @@ -142,8 +142,8 @@ def test_hard_clipping_one_sided_high(self, p):
hard_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=None)
im = p(self.imt)
result = hard_clipper({key: im})
lower, upper = np.percentile(self.imt, (0, 95))
expected = clip(self.imt, lower, upper)
lower, upper = percentile(im, (0, 95))
expected = clip(im, lower, upper)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-7, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
Expand All @@ -152,8 +152,8 @@ def test_hard_clipping_one_sided_low(self, p):
hard_clipper = ClipIntensityPercentilesd(keys=[key], upper=None, lower=5)
im = p(self.imt)
result = hard_clipper({key: im})
lower, upper = np.percentile(self.imt, (5, 100))
expected = clip(self.imt, lower, upper)
lower, upper = percentile(im, (5, 100))
expected = clip(im, lower, upper)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-7, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
Expand All @@ -162,8 +162,8 @@ def test_soft_clipping_two_sided(self, p):
soft_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=5, sharpness_factor=1.0)
im = p(self.imt)
result = soft_clipper({key: im})
lower, upper = np.percentile(self.imt, (5, 95))
expected = soft_clip(self.imt, sharpness_factor=1.0, minv=lower, maxv=upper)
lower, upper = percentile(im, (5, 95))
expected = soft_clip(im, sharpness_factor=1.0, minv=lower, maxv=upper, dtype=torch.float32)
# the rtol is set to 1e-6 because the logaddexp function used in softplus is not stable accross torch and numpy
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-6, atol=0)

Expand All @@ -173,8 +173,8 @@ def test_soft_clipping_one_sided_high(self, p):
soft_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=None, sharpness_factor=1.0)
im = p(self.imt)
result = soft_clipper({key: im})
upper = np.percentile(self.imt, 95)
expected = soft_clip(self.imt, sharpness_factor=1.0, minv=None, maxv=upper)
upper = percentile(im, 95)
expected = soft_clip(im, sharpness_factor=1.0, minv=None, maxv=upper, dtype=torch.float32)
# the rtol is set to 5e-5 because the logaddexp function used in softplus is not stable accross torch and numpy
assert_allclose(result[key], p(expected), type_test="tensor", rtol=5e-5, atol=0)

Expand All @@ -184,8 +184,8 @@ def test_soft_clipping_one_sided_low(self, p):
soft_clipper = ClipIntensityPercentilesd(keys=[key], upper=None, lower=5, sharpness_factor=1.0)
im = p(self.imt)
result = soft_clipper({key: im})
lower = np.percentile(self.imt, 5)
expected = soft_clip(self.imt, sharpness_factor=1.0, minv=lower, maxv=None)
lower = percentile(im, 5)
expected = soft_clip(im, sharpness_factor=1.0, minv=lower, maxv=None, dtype=torch.float32)
# the rtol is set to 1e-6 because the logaddexp function used in softplus is not stable accross torch and numpy
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-6, atol=0)

Expand All @@ -195,8 +195,8 @@ def test_channel_wise(self, p):
clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=5, channel_wise=True)
im = p(self.imt)
result = clipper({key: im})
for i, c in enumerate(self.imt):
lower, upper = np.percentile(c, (5, 95))
for i, c in enumerate(im):
lower, upper = percentile(c, (5, 95))
expected = clip(c, lower, upper)
assert_allclose(result[key][i], p(expected), type_test="tensor", rtol=1e-7, atol=0)

Expand Down