Skip to content
This repository was archived by the owner on Nov 17, 2023. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 92 additions & 0 deletions python/mxnet/contrib/onnx/mx2onnx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -2971,6 +2971,98 @@ def convert_repeat(node, **kwargs):

return nodes


@mx_op.register('_contrib_box_nms')
def convert_contrib_box_nms(node, **kwargs):
"""Map MXNet's _contrib_box_nms operator to ONNX
"""
from onnx.helper import make_node
name, input_nodes, attrs = get_inputs(node, kwargs)

opset_version = kwargs['opset_version']
if opset_version < 11:
raise AttributeError('ONNX opset 11 or greater is required to export this operator')

input_type = kwargs['in_type']
dtype = onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[input_type]

overlap_thresh = float(attrs.get('overlap_thresh', '0.5'))
valid_thresh = float(attrs.get('valid_thresh', '0'))
topk = int(attrs.get('topk', '-1'))
coord_start = int(attrs.get('coord_start', '2'))
score_index = int(attrs.get('score_index', '1'))
id_index = int(attrs.get('id_index', '-1'))
background_id = int(attrs.get('background_id', '-1'))
in_format = attrs.get('in_format', 'corner')
out_format = attrs.get('out_format', 'corner')

center_point_box = 0 if in_format == 'corner' else 1

if in_format != out_format:
raise NotImplementedError('box_nms does not currently support in_fomat != out_format')

if background_id != -1:
raise NotImplementedError('box_nms does not currently support background_id != -1')

if id_index != -1:
raise NotImplementedError('box_nms does not currently support id_index != -1')

nodes = [
create_tensor([coord_start], name+'_cs', kwargs['initializer']),
create_tensor([coord_start+4], name+'_cs_p4', kwargs['initializer']),
create_tensor([score_index], name+'_si', kwargs['initializer']),
create_tensor([score_index+1], name+'_si_p1', kwargs['initializer']),
create_tensor([topk], name+'_topk', kwargs['initializer']),
create_tensor([overlap_thresh], name+'_ot', kwargs['initializer'], dtype=np.float32),
create_tensor([valid_thresh], name+'_vt', kwargs['initializer'], dtype=np.float32),
create_tensor([-1], name+'_m1', kwargs['initializer']),
create_tensor([-1], name+'_m1_f', kwargs['initializer'], dtype=dtype),
create_tensor([0], name+'_0', kwargs['initializer']),
create_tensor([1], name+'_1', kwargs['initializer']),
create_tensor([2], name+'_2', kwargs['initializer']),
create_tensor([3], name+'_3', kwargs['initializer']),
create_tensor([], name+'_void', kwargs['initializer']),
create_tensor([0, 1, -1], name+'_scores_shape', kwargs['initializer']),
create_tensor([0, 0, 1, 0], name+'_pad', kwargs['initializer']),
create_tensor([0, -1], name+'_bat_spat_helper', kwargs['initializer']),
make_node('Shape', [input_nodes[0]], [name+'_shape']),
make_node('Shape', [name+'_shape'], [name+'_dim']),
make_node('Sub', [name+'_dim', name+'_2'], [name+'_dim_m2']),
make_node('Slice', [name+'_shape', name+'_dim_m2', name+'_dim'], [name+'_shape_last2']),
make_node('Concat', [name+'_m1', name+'_shape_last2'], [name+'_shape_3d'], axis=0),
make_node('Reshape', [input_nodes[0], name+'_shape_3d'], [name+'_data_3d']),
make_node('Slice', [name+'_data_3d', name+'_cs', name+'_cs_p4', name+'_m1'],
[name+'_boxes']),
make_node('Slice', [name+'_data_3d', name+'_si', name+'_si_p1', name+'_m1'],
[name+'_scores_raw']),
make_node('Reshape', [name+'_scores_raw', name+'_scores_shape'], [name+'_scores']),
make_node('Shape', [name+'_scores'], [name+'_scores_shape_actual']),
make_node('NonMaxSuppression',
[name+'_boxes', name+'_scores', name+'_topk', name+'_ot', name+'_vt'],
[name+'_nms'], center_point_box=center_point_box),
make_node('Slice', [name+'_nms', name+'_0', name+'_3', name+'_m1', name+'_2'],
[name+'_nms_sliced']),
make_node('GatherND', [name+'_data_3d', name+'_nms_sliced'], [name+'_candidates']),
make_node('Pad', [name+'_candidates', name+'_pad', name+'_m1_f'], [name+'_cand_padded']),
make_node('Shape', [name+'_nms'], [name+'_nms_shape']),
make_node('Slice', [name+'_nms_shape', name+'_0', name+'_1'], [name+'_cand_cnt']),
make_node('Reshape', [name+'_cand_cnt', name+'_void'], [name+'_cc_s']),
make_node('Range', [name+'_0', name+'_cc_s', name+'_1'], [name+'_cand_indices']),
make_node('Slice', [name+'_scores_shape_actual', name+'_0', name+'_3', name+'_m1',
name+'_2'], [name+'_shape_bat_spat']),
make_node('Slice', [name+'_shape_bat_spat', name+'_1', name+'_2'], [name+'_spat_dim']),
make_node('Expand', [name+'_cand_cnt', name+'_shape_bat_spat'], [name+'_base_indices']),
make_node('ScatterND', [name+'_base_indices', name+'_nms_sliced', name+'_cand_indices'],
[name+'_indices']),
make_node('TopK', [name+'_indices', name+'_spat_dim'], [name+'_indices_sorted', name+'__'],
largest=0, axis=-1, sorted=1),
make_node('Gather', [name+'_cand_padded', name+'_indices_sorted'], [name+'_gather']),
make_node('Reshape', [name+'_gather', name+'_shape'], [name+'0'])
]

return nodes


@mx_op.register("_greater_scalar")
def convert_greater_scalar(node, **kwargs):
"""Map MXNet's greater_scalar operator attributes to onnx's Greater
Expand Down
55 changes: 55 additions & 0 deletions tests/python-pytest/onnx/test_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -393,6 +393,61 @@ def test_onnx_export_contrib_BilinearResize2D(tmp_path, dtype, params):
op_export_test('contrib_BilinearResize2D', M, [x], tmp_path)


@pytest.mark.parametrize('topk', [2, 3, 4])
@pytest.mark.parametrize('valid_thresh', [0.3, 0.4, 0.8])
@pytest.mark.parametrize('overlap_thresh', [0.4, 0.7, 1.0])
def test_onnx_export_contrib_box_nms_manual(tmp_path, topk, valid_thresh, overlap_thresh):
# Note that ONNX NMS op only supports float32

# Also note that onnxruntime's nms has slightly different implementation in handling
# overlaps and score ordering when certain boxes are suppressed than that of mxnet
# the following test tensors are manually tweaked to avoid such diferences
# The purpose of theses tests cases are to show that the high level conversion logic is
# laid out correctly

A = mx.nd.array([[
[[[[0.5, 0.1, 0.1, 0.2, 0.2],
[0.4, 0.1, 0.1, 0.2, 0.2],
[0.7, 0.5, 0.5, 0.9, 0.9],
[0.8, 0.1, 0.9, 0.11, 0.91],
[0.001, 0.01, 0.01, 0.02, 0.02]]]],

[[[[0.5, 0.1, 0.1, 0.2, 0.2],
[0.4, 0.1, 0.1, 0.2, 0.2],
[0.7, 0.5, 0.5, 0.9, 0.9],
[0.8, 0.1, 0.9, 0.11, 0.91],
[0.001, 0.01, 0.01, 0.02, 0.02]]]],

[[[[0.4, 0.1, 0.1, 0.2, 0.2],
[0.3, 0.1, 0.1, 0.2, 0.2],
[0.7, 0.5, 0.5, 0.9, 0.9],
[0.8, 0.1, 0.9, 0.11, 0.91],
[0.001, 0.01, 0.01, 0.02, 0.02]]]],
]])
M = def_model('contrib.box_nms', coord_start=1, force_suppress=True,
overlap_thresh=overlap_thresh, valid_thresh=valid_thresh, score_index=0,
topk=topk, in_format='corner', out_format='corner')
op_export_test('contrib_nms_manual_coner', M, [A], tmp_path)

B = mx.nd.array([
[[[[0.7, 0.5, 0.5, 0.2, 0.2],
[0.6, 0.48, 0.48, 0.2, 0.2],
[0.8, 0.76, 0.76, 0.2, 0.2],
[0.9, 0.7, 0.7, 0.2, 0.2],
[0.001, 0.5, 0.1, 0.02, 0.02]]]],

[[[[0.5, 0.2, 0.2, 0.2, 0.2],
[0.6, 0.4, 0.4, 0.21, 0.21],
[0.7, 0.5, 0.5, 0.9, 0.9],
[0.8, 0.1, 0.9, 0.01, 0.01],
[0.001, 0.6, 0.1, 0.02, 0.02]]]],
])
M = def_model('contrib.box_nms', coord_start=1, force_suppress=True,
overlap_thresh=overlap_thresh, valid_thresh=valid_thresh, score_index=0,
topk=topk, in_format='center', out_format='center')
op_export_test('contrib_nms_manual_center', M, [B], tmp_path)


@pytest.mark.parametrize("dtype", ["float16", "float32", "float64", "int32", "int64"])
@pytest.mark.parametrize("scalar", [0., 0.1, 0.5, 1., 5, 555.])
def test_onnx_export_greater_scalar(tmp_path, dtype, scalar):
Expand Down