-
Notifications
You must be signed in to change notification settings - Fork 3.8k
Closed
Labels
needs-triagePRs or issues that need to be investigated by maintainers to find the right assignees to address itPRs or issues that need to be investigated by maintainers to find the right assignees to address ittype: bug
Description
Expected behavior
TVM should run the model correctly.
Actual behavior
For the following model,
it can be executed by onnxruntime, the results are as follows:
ONNXRuntime:
[array([[3.2746487 , 2.0243466 , 0.8304557 , 0.55226177],
[0.48739833, 0.47312835, 0.3515296 , 0.19696969],
[9.719148 , 7.0277977 , 4.5064907 , 0.13069437]], dtype=float32)]However, the onnx frontend of TVM cannot import it:
File "/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", line 3925, in from_onnx
return g.from_onnx(graph, opset)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", line 3556, in from_onnx
self._construct_nodes(graph)
File "/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", line 3736, in _construct_nodes
raise err
File "/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", line 3731, in _construct_nodes
op = self._convert_operator(op_name, inputs, attr, self.opset)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", line 3831, in _convert_operator
sym = op_function(self.bb, inputs, attrs, [self._nodes, self._params])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/relax/frontend/onnx/onnx_frontend.py", line 1343, in _impl_v14
data = bb.emit_te(topi.flip, data, axis=axis if axis else 0)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/relax/block_builder.py", line 540, in emit_te
return self.emit(self.call_te(func, *args, **kwargs), name_hint=name_hint)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/relax/block_builder.py", line 356, in call_te
tir_func, call_args, output_sinfo, tir_vars = gen_call_tir_inputs(func, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/relax/utils.py", line 351, in gen_call_tir_inputs
te_args = _convert_te_arg(args)
^^^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/relax/utils.py", line 289, in _convert_te_arg
new_arg = _convert_te_arg_helper(te_args)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/relax/utils.py", line 273, in _convert_te_arg_helper
return tuple(_convert_te_arg_helper(x) for x in arg)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/relax/utils.py", line 273, in <genexpr>
return tuple(_convert_te_arg_helper(x) for x in arg)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/relax/utils.py", line 223, in _convert_te_arg_helper
if isinstance(arg.struct_info, TensorStructInfo):
^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/ir/expr.py", line 59, in struct_info
return _ffi_api.ExprStructInfo(self)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "tvm/ffi/cython/./function.pxi", line 228, in tvm.ffi.core.Function.__call__
tvm.error.InternalError: Check failed: (ptr) is false: The struct_info is not populated, check if you have normalized the exprEnvironment
OS: Ubuntu 20.04
TVM: 0.22.dev0 (c6969d7)
onnxruntime: 1.21.0
Steps to reproduce
This bug can be reproduced by the following code with the model in the attachment. As shown in the code, the model can be executed by onnxruntime. However, TVM cannot import this model.
import sys
import numpy as np
import onnx
import onnxruntime
import tvm
from tvm import relax
from tvm.relax.frontend.onnx import from_onnx
import pickle
def main():
onnx_model = onnx.load("111.onnx")
with open("inputs.pkl", "rb") as fp:
inputs = pickle.load(fp)
try:
ort_session = onnxruntime.InferenceSession(
onnx_model.SerializeToString(), providers=["CPUExecutionProvider"]
)
ort_output = ort_session.run([], inputs)
except Exception as e:
print(e)
sys.exit(1)
print("ONNXRuntime:\n", ort_output)
# Convert the onnx model into relax through the onnx importer.
tvm_model = from_onnx(onnx_model, keep_params_in_input=True)
if __name__ == "__main__":
main()Triage
Please refer to the list of label tags here to find the relevant tags and add them below in a bullet format (example below).
- needs-triage
Metadata
Metadata
Assignees
Labels
needs-triagePRs or issues that need to be investigated by maintainers to find the right assignees to address itPRs or issues that need to be investigated by maintainers to find the right assignees to address ittype: bug