-
Notifications
You must be signed in to change notification settings - Fork 3.8k
[CMSIS-NN] Pad fusion with QNN Conv2D #12353
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
fa53405
[CMSIS-NN] Added pass that fuses preceding nn.pad with qnn.conv2d
975606f
Added docstrings, comments and chanegd names of variables
e7d58fb
Separated out pattern matching with and without pads
29482e5
Compressed recreating new call nodes for qnn.conv2d
b0b48b3
Reused conv2d pattern matching checks
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,209 @@ | ||
| /* | ||
| * Licensed to the Apache Software Foundation (ASF) under one | ||
| * or more contributor license agreements. See the NOTICE file | ||
| * distributed with this work for additional information | ||
| * regarding copyright ownership. The ASF licenses this file | ||
| * to you under the Apache License, Version 2.0 (the | ||
| * "License"); you may not use this file except in compliance | ||
| * with the License. You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, | ||
| * software distributed under the License is distributed on an | ||
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
| * KIND, either express or implied. See the License for the | ||
| * specific language governing permissions and limitations | ||
| * under the License. | ||
| */ | ||
| /*! | ||
| * \file src/relay/backend/contrib/cmsisnn/fuse_pads.cc | ||
| * \brief Fuses pads that precede qnn.conv2d ops inside CMSIS-NN composite functions. | ||
| */ | ||
|
|
||
| #include <tvm/relay/attrs/nn.h> | ||
| #include <tvm/relay/attrs/transform.h> | ||
| #include <tvm/relay/expr_functor.h> | ||
| #include <tvm/relay/transform.h> | ||
| #include <tvm/runtime/ndarray.h> | ||
|
|
||
| #include "../../../op/make_op.h" | ||
| #include "../../../qnn/utils.h" | ||
| #include "../../../transforms/pattern_utils.h" | ||
| #include "convolutions.h" | ||
|
|
||
| namespace tvm { | ||
| namespace relay { | ||
| namespace contrib { | ||
| namespace cmsisnn { | ||
|
|
||
| inline IntImm ToIntImm(int32_t value) { return IntImm(DataType::Int(32), value); } | ||
|
|
||
| /*! | ||
| * \brief From padding attributes of nn.pad and qnn.conv2d, calculates effective padding along H | ||
| * and W dimensions. | ||
| */ | ||
| Array<IntImm> GetEffectiveConv2DPadding(Expr conv2d, Expr pad) { | ||
| // pad_width: ((), (top, bottom), (left, right), ()) for NHWC layout | ||
| // conv2d_attrs->padding: (top, left, bottom, right) | ||
| auto* conv2d_call = conv2d.as<CallNode>(); | ||
| auto* conv2d_attrs = conv2d_call->attrs.as<Conv2DAttrs>(); | ||
| std::string data_layout = conv2d_attrs->data_layout.c_str(); | ||
| int pos_h = data_layout.find("H"); | ||
| int pos_w = data_layout.find("W"); | ||
|
|
||
| auto* pad_call = pad.as<CallNode>(); | ||
| Array<Array<Integer>> pad_width = pad_call->attrs.as<PadAttrs>()->pad_width; | ||
| int pad_top = | ||
| qnn::get_const_int(conv2d_attrs->padding[0]) + qnn::get_const_int(pad_width[pos_h][0]); | ||
| int pad_left = | ||
| qnn::get_const_int(conv2d_attrs->padding[1]) + qnn::get_const_int(pad_width[pos_w][0]); | ||
| int pad_bottom = | ||
| qnn::get_const_int(conv2d_attrs->padding[2]) + qnn::get_const_int(pad_width[pos_h][1]); | ||
| int pad_right = | ||
| qnn::get_const_int(conv2d_attrs->padding[3]) + qnn::get_const_int(pad_width[pos_w][1]); | ||
|
|
||
| return {ToIntImm(pad_top), ToIntImm(pad_left), ToIntImm(pad_bottom), ToIntImm(pad_right)}; | ||
| } | ||
|
|
||
| /*! | ||
| * \brief This Mutator will find all partitioned functions meant for CMSIS-NN Conv2D. | ||
| * Then, it will fuse preceding pads with qnn.conv2d. | ||
| */ | ||
| class FusePadsMutator : public MixedModeMutator { | ||
| public: | ||
| explicit FusePadsMutator(const IRModule& mod) : mod_(mod) {} | ||
|
|
||
| private: | ||
| /*! | ||
| * \brief In order to eliminate preceding nn.pad op, pad_width of nn.pad is passed onto | ||
| * convolution layer to update Conv2DAttrs's padding attribute. */ | ||
| void UpdateConv2DPadding(const CallNode* conv2d_call, const CallNode* pad_call, | ||
| Attrs* new_attrs) { | ||
| Array<IntImm> effective_padding = | ||
| GetEffectiveConv2DPadding(GetRef<Call>(conv2d_call), GetRef<Call>(pad_call)); | ||
| int pad_top = effective_padding[0]->value; | ||
| int pad_left = effective_padding[1]->value; | ||
| int pad_bottom = effective_padding[2]->value; | ||
| int pad_right = effective_padding[3]->value; | ||
| int pad_diff_w = pad_right - pad_left; | ||
| int pad_diff_h = pad_bottom - pad_top; | ||
asparkhi marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| bool can_pad_be_fused = | ||
| ((pad_diff_w == 0 || pad_diff_w == 1) && (pad_diff_h == 0 || pad_diff_h == 1)); | ||
| std::string error = "Difference on each side of a dimension should be either 0 or 1. "; | ||
| error += "Effective padding in this case: (pad_top, pad_left, pad_bottom, pad_right)=("; | ||
| error += std::to_string(pad_top); | ||
| error += ", "; | ||
| error += std::to_string(pad_left); | ||
| error += ", "; | ||
| error += std::to_string(pad_bottom); | ||
| error += ", "; | ||
| error += std::to_string(pad_right); | ||
| error += ")"; | ||
| ICHECK(can_pad_be_fused) << error; | ||
|
|
||
| // Prepare new attrs as padding has changed | ||
| auto* conv2d_attrs = conv2d_call->attrs.as<Conv2DAttrs>(); | ||
| auto attrs = make_object<Conv2DAttrs>(); | ||
| attrs->strides = std::move(conv2d_attrs->strides); | ||
| attrs->dilation = std::move(conv2d_attrs->dilation); | ||
| attrs->groups = conv2d_attrs->groups; | ||
| attrs->channels = std::move(conv2d_attrs->channels); | ||
| attrs->kernel_size = std::move(conv2d_attrs->kernel_size); | ||
| attrs->data_layout = std::move(conv2d_attrs->data_layout); | ||
| attrs->kernel_layout = std::move(conv2d_attrs->kernel_layout); | ||
| attrs->out_layout = std::move(conv2d_attrs->out_layout); | ||
| attrs->out_dtype = std::move(conv2d_attrs->out_dtype); | ||
| attrs->padding = {pad_top, pad_left, pad_bottom, pad_right}; | ||
| *new_attrs = tvm::Attrs{attrs}; | ||
| } | ||
|
|
||
| /*! | ||
| * \brief Identifies the sequence for qnn.conv2D and fuses the preceding nn.pad present within the | ||
| * CMSIS-NN partitioned function. */ | ||
| Expr FusePadConv2d(const CallNode* conv2d_call) { | ||
| // create new paddings for qnn.conv2d | ||
| tvm::Attrs new_conv2d_attrs = conv2d_call->attrs; | ||
| Expr new_conv2d_input = conv2d_call->args[0]; | ||
| if (auto* pad_call = conv2d_call->args[0].as<CallNode>()) { | ||
| if (auto* pad_call_op = pad_call->op.as<OpNode>()) { | ||
| if (pad_call_op->name == "nn.pad") { | ||
| new_conv2d_input = pad_call->args[0]; | ||
| UpdateConv2DPadding(conv2d_call, pad_call, &new_conv2d_attrs); | ||
| } | ||
| } | ||
| } | ||
|
|
||
| // Conv2D arguments: pad's input + rest of the origin args | ||
| auto new_conv2d_args = conv2d_call->args; | ||
| new_conv2d_args.erase(new_conv2d_args.begin()); | ||
| new_conv2d_args.insert(new_conv2d_args.begin(), new_conv2d_input); | ||
| Call ret_call = Call(conv2d_call->op, new_conv2d_args, new_conv2d_attrs, {}); | ||
| return std::move(ret_call); | ||
| } | ||
|
|
||
| Expr Rewrite_(const CallNode* call, const Expr& post) final { | ||
| Expr ret_call = post; | ||
| auto* post_call = post.as<CallNode>(); | ||
|
|
||
| // Fuse nn.pad and qnn.conv2d | ||
| if (auto* conv2d_op = post_call->op.as<OpNode>()) { | ||
| if (conv2d_op->name == "qnn.conv2d") { | ||
| ret_call = FusePadConv2d(post_call); | ||
| } | ||
| } | ||
|
|
||
| // Identify qnn.conv2d partitioned function | ||
| if (post_call->op.as<FunctionNode>()) { | ||
| auto* func = call->op.as<FunctionNode>(); | ||
| auto func_name = func->GetAttr<String>(attr::kComposite); | ||
| if (func_name.defined() && func_name == "cmsis-nn.qnn_conv2d") { | ||
| Expr new_body = VisitExpr(func->body); | ||
| Function new_func = Function(FreeVars(new_body), new_body, func->ret_type, | ||
| FreeTypeVars(new_body, mod_), func->attrs); | ||
| ret_call = Call(new_func, post_call->args); | ||
| } | ||
| } | ||
|
|
||
| return ret_call; | ||
| } | ||
|
|
||
| private: | ||
| IRModule mod_; | ||
| }; | ||
|
|
||
| IRModule FusePads(const IRModule& mod) { | ||
| for (auto gv : mod->GetGlobalVars()) { | ||
| Function func = Downcast<Function>(mod->Lookup(gv)); | ||
|
|
||
| // only mutate CMSIS-NN partitioned functions | ||
| auto compiler_name = func->GetAttr<String>(attr::kCompiler); | ||
| if (!compiler_name.defined() || compiler_name != "cmsis-nn") { | ||
| continue; | ||
| } | ||
|
|
||
| auto fuse_pads_mutator = FusePadsMutator(mod); | ||
| auto new_func_body = fuse_pads_mutator.VisitExpr(func->body); | ||
| if (!new_func_body.same_as(func->body)) { | ||
| Function new_func = | ||
| Function(func->params, new_func_body, func->ret_type, func->type_params, func->attrs); | ||
| mod->Update(gv, new_func); | ||
| } | ||
| } | ||
| return mod; | ||
| } | ||
|
|
||
| transform::Pass CMSISNNFusePads() { | ||
| runtime::TypedPackedFunc<IRModule(IRModule, transform::PassContext)> pass_func = | ||
| [=](IRModule m, transform::PassContext pc) { return FusePads(m); }; | ||
| return tvm::transform::CreateModulePass(pass_func, 0, "CMSISNNFusePads", {}); | ||
| } | ||
|
|
||
| TVM_REGISTER_GLOBAL("relay.ext.cmsisnn.transform.CMSISNNFusePads").set_body_typed(CMSISNNFusePads); | ||
| TVM_REGISTER_GLOBAL("relay.ext.cmsisnn.transform.GetEffectiveConv2DPadding") | ||
| .set_body_typed(GetEffectiveConv2DPadding); | ||
|
|
||
| } // namespace cmsisnn | ||
| } // namespace contrib | ||
| } // namespace relay | ||
| } // namespace tvm | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.