Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 59 additions & 1 deletion src/relax/op/tensor/manipulate.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1805,12 +1805,70 @@ StructInfo InferStructInfoRepeat(const Call& call, const BlockBuilder& ctx) {
return TensorStructInfo(ShapeExpr(shape_array), data_sinfo->dtype, data_sinfo->vdevice);
}

// TODO(relax-team): implement FRelaxInferLayout for repeat
InferLayoutOutput InferLayoutRepeat(
const Call& call, const ffi::Map<ffi::String, ffi::Array<ffi::String>>& desired_layouts,
const VarLayoutMap& var_layout_map) {
ICHECK(NoDesiredLayout(call, desired_layouts));

const auto* attrs = call->attrs.as<RepeatAttrs>();
ICHECK(attrs != nullptr) << "Invalid Call";
const auto* tensor_sinfo = GetStructInfoAs<TensorStructInfoNode>(call->args[0]);
ICHECK(tensor_sinfo != nullptr) << "Invalid Call";
ICHECK(!tensor_sinfo->IsUnknownNdim()) << "Only support static ndim for now";

LayoutDecision existing_layout = GetLayoutDecision(var_layout_map, call->args[0]);
int ndim = tensor_sinfo->ndim;

// Can't handle sub indexed layouts.
if (existing_layout->layout.ndim() != existing_layout->layout.ndim_primal()) {
existing_layout = LayoutDecision(InitialLayout(ndim));
}

// When axis is not specified, the output is 1D (flattened)
if (!attrs->axis.has_value()) {
return InferLayoutOutput({existing_layout}, {InitialLayoutDecision(1)}, Attrs(call->attrs));
}

// Transform the axis based on the layout
int axis = attrs->axis.value();
if (axis < 0) {
axis += ndim;
}

// Create a mapping from original layout to existing layout
std::string axis_str(ndim, '0');
axis_str[axis] = '1';
for (int i = 0, j = 0; i < ndim; ++i) {
if (axis_str[i] != '1') {
axis_str[i] = 'A' + j++;
}
}

ffi::String new_axis_str =
TransposeStrLike(axis_str, InitialLayout(ndim), existing_layout->layout);

int64_t new_axis = -1;
for (size_t i = 0; i < new_axis_str.size(); ++i) {
if (new_axis_str.at(i) == '1') {
new_axis = i;
break;
}
}
ICHECK_GE(new_axis, 0) << "Failed to find transformed axis";
Comment on lines +1850 to +1857
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

This loop to find the index of '1' can be simplified by using ffi::String::find, which is more idiomatic and concise.

  size_t pos = new_axis_str.find('1');
  ICHECK(pos != std::string::npos) << "Failed to find transformed axis";
  int64_t new_axis = static_cast<int64_t>(pos);


ObjectPtr<RepeatAttrs> new_attrs = ffi::make_object<RepeatAttrs>(*attrs);
new_attrs->axis = new_axis;

// When axis is specified, the layout is preserved
return InferLayoutOutput({existing_layout}, {existing_layout}, Attrs(new_attrs));
}

TVM_REGISTER_OP("relax.repeat")
.set_attrs_type<RepeatAttrs>()
.set_num_inputs(1)
.add_argument("data", "Tensor", "The input tensor.")
.set_attr<FInferStructInfo>("FInferStructInfo", InferStructInfoRepeat)
.set_attr<FRelaxInferLayout>("FRelaxInferLayout", InferLayoutRepeat)
.set_attr<Bool>("FPurity", Bool(true));

/* relax.tile */
Expand Down
85 changes: 85 additions & 0 deletions tests/python/relax/test_transform_convert_layout.py
Original file line number Diff line number Diff line change
Expand Up @@ -4992,5 +4992,90 @@ def main(
verify(Input, Expected_NCHW4c, {"relax.nn.conv2d": ["NCHW4c", "OIHW4o"]})


def test_conv2d_repeat():
@I.ir_module
class Input:
@R.function
def main(
x: R.Tensor((2, 3, 28, 28), "float32"), w: R.Tensor((4, 3, 3, 3), "float32")
) -> R.Tensor(None, "float32", ndim=4):
with R.dataflow():
gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32")
gv2: R.Tensor((2, 8, 26, 26), "float32") = R.repeat(gv, repeats=2, axis=1)
R.output(gv2)
return gv2

@I.ir_module
class Expected:
@R.function
def main(
x: R.Tensor((2, 3, 28, 28), dtype="float32"), w: R.Tensor((4, 3, 3, 3), dtype="float32")
) -> R.Tensor(None, dtype="float32", ndim=4):
with R.dataflow():
lv: R.Tensor((2, 28, 28, 3), dtype="float32") = R.permute_dims(x, axes=[0, 2, 3, 1])
lv1: R.Tensor((4, 3, 3, 3), dtype="float32") = R.permute_dims(w, axes=[0, 2, 3, 1])
gv: R.Tensor((2, 26, 26, 4), dtype="float32") = R.nn.conv2d(
lv,
lv1,
strides=[1, 1],
padding=[0, 0, 0, 0],
dilation=[1, 1],
groups=1,
data_layout="NHWC",
kernel_layout="OHWI",
out_layout="NHWC",
out_dtype="float32",
)
lv2: R.Tensor((2, 26, 26, 8), dtype="float32") = R.repeat(gv, repeats=2, axis=3)
gv2: R.Tensor((2, 8, 26, 26), dtype="float32") = R.permute_dims(
lv2, axes=[0, 3, 1, 2]
)
R.output(gv2)
return gv2

verify(Input, Expected)


def test_conv2d_repeat_flatten():
@I.ir_module
class Input:
@R.function
def main(
x: R.Tensor((2, 3, 28, 28), "float32"), w: R.Tensor((4, 3, 3, 3), "float32")
) -> R.Tensor((5408,), "float32"):
with R.dataflow():
gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32")
gv2: R.Tensor((5408,), "float32") = R.repeat(gv, repeats=1)
R.output(gv2)
return gv2

@I.ir_module
class Expected:
@R.function
def main(
x: R.Tensor((2, 3, 28, 28), dtype="float32"), w: R.Tensor((4, 3, 3, 3), dtype="float32")
) -> R.Tensor((5408,), dtype="float32"):
with R.dataflow():
lv: R.Tensor((2, 28, 28, 3), dtype="float32") = R.permute_dims(x, axes=[0, 2, 3, 1])
lv1: R.Tensor((4, 3, 3, 3), dtype="float32") = R.permute_dims(w, axes=[0, 2, 3, 1])
gv: R.Tensor((2, 26, 26, 4), dtype="float32") = R.nn.conv2d(
lv,
lv1,
strides=[1, 1],
padding=[0, 0, 0, 0],
dilation=[1, 1],
groups=1,
data_layout="NHWC",
kernel_layout="OHWI",
out_layout="NHWC",
out_dtype="float32",
)
gv2: R.Tensor((5408,), dtype="float32") = R.repeat(gv, repeats=1)
R.output(gv2)
return gv2

verify(Input, Expected)


if __name__ == "__main__":
tvm.testing.main()
Loading