Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ else(MSVC)
include(CheckCXXCompilerFlag)
check_cxx_compiler_flag("-std=c++11" SUPPORT_CXX11)
if ("${CMAKE_BUILD_TYPE}" STREQUAL "Debug")
add_compile_options(-Wall -fPIC -std=c++11)
add_compile_options(-O0 -Wall -fPIC -std=c++11)
else()
set(CMAKE_C_FLAGS "-O2 -Wall -fPIC ${CMAKE_C_FLAGS}")
set(CMAKE_CXX_FLAGS "-O2 -Wall -fPIC -std=c++11 ${CMAKE_CXX_FLAGS}")
Expand Down
14 changes: 9 additions & 5 deletions python/tvm/relay/op/_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,17 +5,21 @@
from .op import register_compute, register_schedule, register_pattern
from .op import register_gradient
from .op import schedule_injective, OpPattern
from .transform import collapse_sum_like
from .tensor import negative


def add_grad(orig, grad):
from tvm.relay import op
return [op.broadcast_to_like(grad, orig.args[0]), op.broadcast_to_like(grad, orig.args[1])]
return [collapse_sum_like(grad, orig.args[0]), collapse_sum_like(grad, orig.args[1])]


register_gradient("add", add_grad)


def subtract_grad(orig, grad):
from tvm.relay import op
return [op.broadcast_to_like(grad, orig.args[0]),
op.broadcast_to_like(op.negative(grad), orig.args[1])]
return [collapse_sum_like(grad, orig.args[0]),
collapse_sum_like(negative(grad), orig.args[1])]


register_gradient("subtract", subtract_grad)

Expand Down
56 changes: 56 additions & 0 deletions tests/python/relay/test_ad.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,8 +69,64 @@ def test_sub():
np.testing.assert_allclose(grad.asnumpy(), np.zeros_like(x.asnumpy()))


def test_broadcast_add():
shape1 = (3, 4, 1)
shape2 = (1, 5)
dtype = 'float32'
x_nd = rand(dtype, *shape1)
y_nd = rand(dtype, *shape2)
x_np = x_nd.asnumpy()
y_np = y_nd.asnumpy()
expected_forward = x_np + y_np
t1 = relay.TensorType(shape1, dtype)
t2 = relay.TensorType(shape2, dtype)
x = relay.var("x", t1)
y = relay.var("y", t2)
func = relay.Function([x, y], x + y)
full_func = relay.ir_pass.infer_type(gradient(func))
assert full_func.checked_type == relay.FuncType([t1, t2],
relay.TupleType([relay.TensorType(expected_forward.shape, dtype),
relay.TupleType([t1, t2])]))
ex = create_executor()
forward, (grad_x, grad_y) = ex.evaluate(full_func)(x_nd, y_nd)
np.testing.assert_allclose(forward.asnumpy(), expected_forward)
np.testing.assert_allclose(grad_x.asnumpy(),
np.ones_like(expected_forward).sum(axis=2, keepdims=True))
np.testing.assert_allclose(grad_y.asnumpy(),
np.ones_like(expected_forward).sum(axis=(0, 1), keepdims=True).squeeze(axis=0))


def test_broadcast_subtract():
shape1 = (3, 4, 1)
shape2 = (1, 5)
dtype = 'float32'
x_nd = rand(dtype, *shape1)
y_nd = rand(dtype, *shape2)
x_np = x_nd.asnumpy()
y_np = y_nd.asnumpy()
expected_forward = x_np - y_np
t1 = relay.TensorType(shape1, dtype)
t2 = relay.TensorType(shape2, dtype)
x = relay.var("x", t1)
y = relay.var("y", t2)
func = relay.Function([x, y], x - y)
full_func = relay.ir_pass.infer_type(gradient(func))
assert full_func.checked_type == relay.FuncType([t1, t2],
relay.TupleType([relay.TensorType(expected_forward.shape, dtype),
relay.TupleType([t1, t2])]))
ex = create_executor()
forward, (grad_x, grad_y) = ex.evaluate(full_func)(x_nd, y_nd)
np.testing.assert_allclose(forward.asnumpy(), expected_forward)
np.testing.assert_allclose(grad_x.asnumpy(),
np.ones_like(expected_forward).sum(axis=2, keepdims=True))
np.testing.assert_allclose(grad_y.asnumpy(),
-np.ones_like(expected_forward).sum(axis=(0, 1), keepdims=True).squeeze(axis=0))


if __name__ == "__main__":
test_id()
test_add()
test_temp_add()
test_sub()
test_broadcast_add()
test_broadcast_subtract()