Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions python/tvm/relay/op/nn/_nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -157,8 +157,10 @@ def convert_conv2d(attrs, inputs, tinfos, desired_layouts):
return relay.nn.conv2d(data, weight, **new_attrs)
elif desired_data_layout == 'NHWC':
# Check for depthwise convolution.
if is_depthwise_conv2d(data.shape, attrs['data_layout'], weight.shape,
attrs['kernel_layout'], attrs['groups']):
data_info, weight_info = tinfos
if is_depthwise_conv2d(data_info.shape, attrs['data_layout'],
weight_info.shape, attrs['kernel_layout'],
attrs['groups']):
new_attrs['kernel_layout'] = 'HWOI'
else:
new_attrs['kernel_layout'] = 'HWIO'
Expand Down
6 changes: 4 additions & 2 deletions python/tvm/relay/qnn/op/layout_conversions.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,8 +62,10 @@ def convert_qnn_conv2d(attrs, inputs, tinfos, desired_layouts):
return relay.qnn.op.conv2d(*inputs, **new_attrs)
if desired_data_layout == 'NHWC':
# Check for depthwise convolution.
if is_depthwise_conv2d(inputs[0].shape, attrs['data_layout'], inputs[1].shape,
attrs['kernel_layout'], attrs['groups']):
data_info, weight_info = tinfos
if is_depthwise_conv2d(data_info.shape, attrs['data_layout'],
weight_info.shape, attrs['kernel_layout'],
attrs['groups']):
new_attrs['kernel_layout'] = 'HWOI'
else:
new_attrs['kernel_layout'] = 'HWIO'
Expand Down
38 changes: 38 additions & 0 deletions tests/python/relay/test_pass_convert_op_layout.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,43 @@ def expected():
assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a)


def test_conv_nhwc_convert_layout():
def before():
x = relay.var("x", shape=(1, 64, 56, 56))
weight = relay.var('weight', shape=(64, 64, 3, 3))
y = relay.nn.conv2d(x, weight,
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout='NCHW',
kernel_layout='OIHW')
y = relay.nn.relu(y)
y = relay.Function([x, weight], y)
return y

def expected():
x = relay.var("x", shape=(1, 64, 56, 56))
weight = relay.var('weight', shape=(64, 64, 3, 3))
x = relay.layout_transform(x, 'NCHW', 'NHWC')
weight = relay.layout_transform(weight, 'OIHW', 'HWIO')
y = relay.nn.conv2d(x, weight,
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout="NHWC",
kernel_layout="HWIO")
y = relay.nn.relu(y)
y = relay.layout_transform(y, 'NHWC', 'NCHW')
y = relay.Function(relay.analysis.free_vars(y), y)
return y

a = before()
a = run_opt_pass(a, transform.ConvertLayout({'nn.conv2d': ['NHWC', 'default']}))
b = run_opt_pass(expected(), transform.InferType())

assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a)


def test_conv_transpose_convert_layout():
def before():
x = relay.var("x", shape=(1, 56, 56, 64))
Expand Down Expand Up @@ -795,6 +832,7 @@ def expected():
if __name__ == "__main__":
test_no_convert_layout()
test_conv_convert_layout()
test_conv_nhwc_convert_layout()
test_conv_bias_pool_convert_layout()
test_conv_concat_convert_layout()
test_dual_path_convert_layout()
Expand Down